本文要点:
两种或多种催化剂在同一个反应器中进行多步反应,并行串联催化,可以使(生物)制药和精细化学品制造变得更加可持续。
在本文中,作者报道了金属纳米粒子和生物催化系统在合成共价有机框架胶囊COFcap-2中的共固定化,其功能类似于人工细胞,因为催化剂被捕获在300-400 nm的空腔内,底物/产物可以通过ca. 2纳米视窗。
COFcap-2反应器首先被涂覆到电极表面上,然后使用二氮作为原料来制备11种纯手性胺。胺,包括药物产品中间体和活性药物成分,在环境条件下在水中以> 99%的对映体过量制备。
重要的是,COFcap-2系统在保持性能的情况下循环使用15次,解决了酶的相对不稳定性和可循环性差的问题,这些问题阻碍了酶在高能效、低废物生产化学品和(生物)药物方面的广泛应用。
Fig. 1 | Schematic illustrations of COFcap-2 fabrication. The PEG-driven emulsion templating approach to prepare COFcap-2 enabled immobilization of multiple catalysts and subsequent conversion of N2 to chiral amines. SEM image of COFcap-2 on the upper right.
Fig. 2 | Characterizations of COFcap-2. a TEM images of COFcap-2 prepared with different reagent ratios (from left to right, DTH-400:DTH:TB = 0:30:20, 1:29:20, 3:27:20, 5:25:20, 10:20:20, 20:10:20, 30:0:20). b Synthesis of COFcap-2. c, d PXRD patterns and N2 sorption isotherms of COFcap-2 prepared with different ratios. e The shell thickness of COFcap-2 with different ratios. f The size and corresponding TEM images of COFcap-2 with different volumes of water/trichloromethane
Fig. 3 | Characterization of enzyme◎COFcap-2. a PXRD patterns of lipase◎COFcap-2 with different ratios: 0:30:20, 1:29:20, 3:27:20, 5:25:20, 10:20:20. b The L-glutamic acid yield rate of GluDH◎COFcap-2 and 2-amino-4-phenylbutane yield rate of ω-TA◎COFcap-2. The error bar of the sample refers to the standard deviation of three groups prepared at different times (n = 3). c 3D view of CLSM image of FITC-tagged lipase◎COFcap-2. d SIM image of GCDH&GluDH&ωTA◎COFcap-2. Scale bar: 500 nm. Source data are provided as a Source Data file.
Fig. 4 | Tandem catalyst system inside COFcap-2.
https://doi.org/10.1038/s41467-025-56214-0