本文要点:
使用金属化共价有机框架(COFs)作为催化剂将CO2催化转化为有价值的化学品是降低大气CO2水平的有前途的方法。
本文合成了室温常压醛胺COF (TAPT-Tp)及其金属化产物,Ni-TAPT-Tp and Ti-TAPT-Tp。
光催化结果表明,对于Ni-TAPT-Tp,CO2到CO的还原速率为6182.5 µmol g−1 h−1,但是对于Ti-TAPT-Tp,仅为1615.4 µmol g−1 h−1。
密度泛函理论(DFT)模拟进一步证明,对于中间体*CO2,*COOH和*CO,Ni-TAPT-Tp的能量始终低于Ti-TAPT-Tp的能量,这表明Ni-TAPT-Tp对CO2RR表现出优异的光催化性能。
该工作为优化M-COFs的配位结构以获得高活性和高选择性的CO2RR提供了参考。
Scheme 1. Schematic representation of synthesis of M-TAPT-Tp (M = Ni and Ti) for photocatalytic CO2RR.
Figure 1. a) Rietveld refinement of TAPT-Tp. b) PXRD pattern of TAPT-Tp, Ni-TAPT-Tp, and Ti-TAPT-Tp. c) Infrared spectra of TAPT, Tp, TAPT-Tp, Ni-TAPTTp, Ti-TAPT-Tp. d–f) Raman spectra, N2 adsorption-desorption isotherms and Pore size distribution of TAPT-Tp, Ni-TAPT-Tp, and Ti-TAPT-Tp.
Figure 2. a) SEM images and b) High-resolution TEM images and c–h) Energy dispersive X-ray (EDX) maps of Ni-TAPT-Tp, with carbon mapped in yellow, nitrogen mapped in green, oxygen mapped in red, nickel mapped in blue, and chlorine mapped in pink. Scale bar: 500 nm. i) XPS survey spectrum for Ni-TAPT-Tp.(j–n) High-resolution XPS spectra of C 1s, O 1s, N 1s, Ni 2p, and Cl 2p for Ni-TAPT-Tp.
Figure 3. a,b) XANES spectra and FT-EXAFS spectra at the Ni k-edge of Ni-TAPT-Tp, NiO, NiPc, and Ni foil samples. c) WT-EXAFS spectrum of discriminating radial distance and k-space resolution of Ni-TAPT-Tp. d,e) XANES spectra and FT-EXAFS spectra at the Ti k-edge of Ti-TAPT-Tp, TiO2, and Ti foil samples. f) WT-EXAFS spectrum of discriminating radial distance and k-space resolution of Ti-TAPT-Tp.
Figure 4. a) Transient photocurrent response plots of TAPT-Tp, Ni-TAPT-Tp, Ti-TAPT-Tp. b) EIS Nyquist plots for Ni-TAPT-Tp and Ti-TAPT-Tp under light and dark. c) Tauc plots of TAPT-Tp, Ni-TAPT-Tp and Ti-TAPT-Tp. d) Mott–Schottky plots of Ni-TAPT-Tp in 0.2 m Na2SO4 aqueous solution. e) Energy band structure of TAPT-Tp, Ni-TAPT-Tp and Ti-TAPT-Tp. f) Schematic energy-level diagram showing the electron transfer from [Ru(bpy)3]Cl2 to Ni-TAPT-Tp.
Figure 5. a) CO evolution with irradiation time for the CO2RR catalyzed by Ni-TAPT-Tp, Ti-TAPT-Tp, and TAPT-Tp under visible light irradiation. b) Photocatalytic CO2RR under various conditions of Ni-TAPT-Tp. c) Mass spectra of 13CO driven for Ni-TAPT-Tp during light irradiation under a 13CO2 atmosphere. d) Stability of Ni-TAPT-Tp during 3 cycles of photocatalytic CO2RR.
Figure 6. a) Gibbs energy distribution of CO2RR to CO on Ni-TAPT-Tp (red line) and Ti-TAPT-Tp (blue line). b) Proposed reaction mechanism for photocatalytic CO2RR to CO over Ni-TAPT-Tp.
https://doi.org/10.1002/smll.202411316