本文要点:
太阳能的有效利用被广泛认为是解决能源危机和减少对化石燃料依赖的关键解决方案。耦合光热和光化学转换可以有效地提高太阳能的利用率,但仍然具有挑战性。
受绿色植物光合作用系统的启发,作者报道了一种人造太阳能转换器(ASEC),它由作为太阳能收集器的集光单元和作为反应器和运输器的定向离子亲水通道组成。
基于这样的架构,得到的ASEC(即ASEC-NJFU-1)可以高效地实现自然光下从天然海水中并行生产淡水和H2O2。ASEC-NJFU-1的总太阳能转化率(SEC)高达8047 kJ·m-2·h-1,对应的淡水和H2O2的产率分别为3.56 kg·m-2·h-1和19 mM·m-2·h-1,这是迄今为止报道的所有光热-光催化系统中的最高值。
结合光谱和实验研究的机理研究表明,ASEC-NJFU-1的高SEC性能归因于植物生物启发结构的存在,其中碳纳米管作为太阳能收集器,COF基定向气凝胶作为反应器和运输器。因此,作者的工作建立了一个新的高效利用太阳能的人工光合作用系统。
Figure 1. The schematic of bioinspired photothermal–photocatalysis system as exemplified in ASEC-NJFU-1.
Figure 2.Characterization of ASEC-NJFU-1 and related materials. (a) PXRD patterns of simulated Tp-EB, experimental Tp-EB, nanocellulose and ASEC-NJFU-1. (b) FT-IR spectra of Tp-EB, nanocellulose and aerogel-Tp-EB. (c) X-ray photoelectron spectroscopy of Tp-EB and aerogel-Tp-EB. (d) SEM image of ASEC-NJFU1. (e) Absorption spectra and diffuse reflectance spectra of ASEC-NJFU-1 and aerogel-Tp-EB for a broad range of wavelengths. (f) Nitrogen adsorptiondesorption isotherms measured at 77 K for Tp-EB, nanocellulose and aerogel-Tp-EB.
Figure 3. Photothermal–photocatalytic performance of ASEC-NJFU-1. (a) Surface temperatures of the ASEC-NJFU-1 and bulk water without evaporator under one sun illumination. (b) Water mass loss of pure water and different samples under one sun illumination. (c) The comparison of evaporation rate of different samples. (d) Ion concentration of seawater (Na+, K+, Mg2+, Ca2+) before and after desalination. (e) The comparison of photocatalytic H2O2 yield. (f) The comparison of total SEC in different photothermal–photocatalysis systems. (g) Shape plasticity of aerogel-Tp-EB. (h) Large-sized aerogel-Tp-EB. (i) Optical image of the outdoor device for test.
Figure 4. Photothermal–photocatalytic mechanism of ASEC-NJFU-1. (a) Absorption spectra and diffuse reflectance spectra of ASEC-NJFU-1, ASEC-NJFU-1-R and aerogel-Tp-EB. (b) The water transport rate in nanocellulose, ASEC-NJFU-1-R and ASEC-NJFU-1. (c) DSC curves of ASEC-NJFU-1 and water. (d) The content of FW and IW in nanocellulose and ASEC-NJFU-1 obtained by Raman spectra. (e) Transient photocurrent response of Tp-EB and ASEC-NJFU-1. (f) The comparison of photocatalytic H2O2 production in ASEC-NJFU-1 and Tp-EB.
Figure 5.(a) Photothermal-photocatalytic performance of ASEC-NJFU-1 under different light sources. (b) EPR signals of O2 •- under the irradiation of different light sources. (c) EIS plots of ASEC-NJFU-1 at room temperature and 45 ℃. (d) The Gibbs energy calculation of ASEC-NJFU-1 for the photocatalytic reaction to form H2O2 at different temperatures.
https://doi.org/10.1002/anie.202421990