美国能源部提名资助专注于光伏创新理念的研发项目

文摘   2024-11-09 12:15   中国  

美国能源部(DOE)太阳能技术办公室(SETO)于 2024 年推出太阳能小型创新项目(SIPS)资助计划,其资助金额高达 540 万美元,专门用于早期研发项目。这些项目聚焦于光伏(PV)和聚光太阳能热发电(CSP)领域,重点在于挖掘其中极具创新和新颖性的想法。需要注意的是,此类项目相较于基于现有技术展开研究的想法而言,存在着更大的风险。
 
最近公布了16个入选项目,其中有5个钙钛矿相关项目。

Georgia Tech Research Corp. 获得了250,000美元的项目,该项目名为:由于环境压力源导致的钙钛矿缺陷量化的低成本计量。该项目旨在开发一种仪器,通过降解钙钛矿器件并对其进行分析来测试钙钛矿薄膜中的缺陷。如果成功,该仪器可以集成到高性能生产线和测试方案中,从而为金属卤化物钙钛矿光伏(PV)提供更准确、更可靠和更加速的稳定性方案,从而延长PV系统的使用寿命。

美国国家可再生能源实验室(NREL)获得了250,000美元的项目,该项目名为:使用4D STEM 可视化局部电场:访问缺失的环节以进行PV器件优化。该项目旨在使用扫描透射电子显微镜(STEM)来展示钙钛矿界面在光照下操作时如何变化,以及新材料如何提高碲化镉的性能。该项目的主要目标是开发一种先进的STEM技术,该技术可以在光伏(PV)研究界常规应用,并推动薄膜光伏材料电池效率和耐用性的进步。

普渡大学(Purdue University)获得了250,000美元的项目,该项目名为:无ITO和可卷起来钙钛矿太阳能电池。该项目旨在引入一种创新材料,用于钙钛矿模组的导电透明电极,该材料比目前使用的氧化铟锡(ITO)更容易制造。这种透明的导电层可用于制造灵活、高效且具有成本效益的钙钛矿太阳能组件。通过这一策略,将展示一种完全可卷曲的钙钛矿太阳能电池,其弯曲半径小于1毫米,功率转换效率超过18%。该项目可以实现从昂贵、不灵活的ITO模组基板转变为灵活、廉价且易于加工的钙钛矿光伏,并兑现低成本太阳能的承诺。

加州大学圣地亚哥分校(University of California San Diego)获得了一项金额为 250,000 美元的项目,项目名称是 “钙钛矿太阳能模块的 Bilithic 集成”。该项目致力于开发一种全新的薄膜光伏(PV)模块制造方法,以此简化制造流程。这种创新方法在模组的 “Bilithic” 集成环节充分利用钙钛矿的特性,与单片集成方式不同,它能够对模组的顶部和底部进行独立处理,之后再将二者夹合在一起。这一方法为钙钛矿层的排列开辟了新的途径,有助于实现更出色的整体光伏性能,同时让制造过程更加轻松便捷。

迈阿密大学(University of Miami)也获得了一个 250,000 美元的项目,名为 “通过原子层沉积为钙钛矿太阳能电池和微型模组提供无机电荷传输层”。该项目旨在运用一种新方法改进钙钛矿电池,这种方法可以精确地控制材料成分和厚度,从而缓解钙钛矿的稳定性问题。在项目结束之际,该团队将把这一方法应用于电池和微型模组,以此展现其与光伏行业的紧密相关性。

原文如下:

Georgia Tech Research Corp. received  $250,000 for a project titled: Low-cost Metrology Advancement for Perovskite Defect Quantification due to Environmental Stressors. This project aims to develop an instrument to test for defects in perovskite thin films by degrading perovskite devices and analyzing them. If successful, the instrument could be integrated into high-performance manufacturing lines and testing protocols, resulting in more accurate, reliable, and accelerated stability protocols for metal halide-perovskite photovoltaics (PV), increasing PV system lifetimes.  

National Renewable Energy Laboratory (NREL) received $250,000 for a project titled: Visualizing Local Electric Fields with 4D STEM: Accessing the Missing Link for PV Device Optimization. This project aims to use scanning transmission electron microscopy (STEM) to demonstrate how perovskite interfaces change when operated under light, and how new materials can improve performance in cadmium telluride. The primary objective of this project is to develop an advanced STEM technique that can be routinely applied within the photovoltaics (PV) research community and enable advancements in thin-film PV material cell efficiency and durability. 

Purdue University received $250,000 for a project titled: ITO-Free and Rollable Perovskite Solar Cells. This project seeks to introduce an innovative material for an electrically conductive transparent front layer of a perovskite module which would be easier to manufacture than the currently used indium tin oxide (ITO). This transparent conductive layer could be used to create flexible, high-efficiency, and cost-effective perovskite solar modules. Through this strategy, a fully rollable perovskite solar cell—with a bending radius smaller than one millimeter and a power conversion efficiency of over 18%—will be demonstrated. This project could enable a shift from costly, inflexible ITO module front layers to those that are flexible, cheap, and easily processed for perovskite photovoltaics and deliver on the promise of low cost solar. 

University of California San Diego received $250,000 for a project titled: Bilithic Integration of Perovskite Solar Modules. This project seeks to develop a new approach to thin-film photovoltaic (PV) module fabrication to streamline manufacturing. This approach leverages the properties of perovskites in a “bilithic” integration of the module, which in contrast to a monolithic integration, allows independent processing of the top and bottom of the module and then sandwiching the two sides together. This approach enables new possibilities for how perovskite layers are arranged for better overall PV performance and easier manufacturing.  

University of Miami received $250,000 for a project titled: Inorganic Charge Transport Layers via Atomic Layer Deposition for Perovskite Solar Cells and Minimodules. This project seeks to improve perovskite cells by using a novel approach which offers precise control over material composition and thickness to mitigate issues with perovskite stability. By the end of the project, the team will apply this approach to both cells and minimodules to demonstrate relevance to the photovoltaics industry. 

(消息来源:perovskite-info.com)

西安浴日光能科技有限公司

电  话:029-81101199

手  机:18009182172(微信号)
邮  箱:marketing@yurisolar.com
网  址:www.yurisolar.com
地  址:陕西省西安市秦创原陕西物联网产业基地C区2号楼    

本微信公众号“钙钛矿材料和器件”所发表内容转载时会注明来源,版权归原出处所有(无法查证版权的或未注明出处的均来源于网络搜集)。转载内容(视频、文章、广告等)只以信息传播为目的,仅供参考,不代表本公众号认同其观点和立场。内容的真实性、准确性和合法性由原作者负责。如涉及侵权,请联系删除,此转载不作为商业用途。


热辐射与微纳光子学
热辐射与微纳光子学
 最新文章