进入公众号 点击右上角“...”设为星标 防止内容走丢
本期文章
人机协同时代的机遇——开展现象驱动的组织管理研究
Opportunities in the Era of Human-AI Collaboration—Conducting Phenomenon-Driven Management Research in Organizations
【原文刊载在《经济管理学刊》2024年第3卷第4期】(2024年12月出版)
作者
张志学,高雅琪,梁宇畅,李涵,李航涛,汤明月,北京大学光华管理学院
Zhi-Xue Zhang, Yaqi Gao, Yuchang Liang, Han Li, Hangtao Li, Mingyue Tang (Guanghua School of Management, Peking University)
摘要
鉴于组织行为学及其所属的工商管理学科一直受到“理论-实践”脱节的批评,管理学者呼吁更多立足真实组织情境、兼具科学严谨性与现实关联性的研究。在人工智能时代,随着组织要素与组织逻辑在重大技术变革中发生显著变化,开展基于现象的人机协同研究成为提升本学科领域学术创新性与现实影响力的关键方向。本文总结了目前人与AI研究的现状,评述不同学科在“反应”“互动”与“协同”三个主题上的表现,重点梳理了实地场景下的人机协同研究进展,并以一篇发表在《管理学会学报》(Academy of Management Journal)上的民族志研究为例,分析如何从现象出发进行理论构建。在厘清现状的基础上,本文回溯了人机交互研究中的经典基础理论,以启发研究者以更加深入现场、贴近本质的视角思考当代的人机协同研究。最后,本文展望了若干基于人机协同实践的未来研究方向。
关键词
关键词:现象驱动的研究;组织管理;人工智能;人机协同
Keywords: Phenomenon-Based Research; Organizational Management; Artificial Intelligence; Human-AI Collaboration
内容精要
如何在人工智能时代更好地开展兼具理论与现实意义的人机协同研究?为回应这一问题,在本文中,我们重点阐述下列要点:
1.基于真实组织情境开展管理学及人机协同研究的必要性
2.当前文献中人与AI关系研究的主要内容及主题演进
3.以一篇AMJ文章为例分析基于现象的理论构建
4.回顾人机交互研究中的经典基础理论
5.指出人机协同现象的潜在研究方向
自20世纪50年代以来,管理学界一直面临“理论-实践”脱节的批评。根据Tranfield and Starkey (1998) 所区分的两类组织与管理研究模式,当前组织管理研究过于聚焦模式1,即从文献中提出问题;而脱离模式2,即从应用情境中提出问题。采用模式2的研究为情境主义和动态发展的社会科学提供了新机遇,也为管理研究者搭建了触及并联通不同用户社群的桥梁,能有效体现商学研究在不同组织和国家环境下的延展性。
以组织管理领域的重要分支组织行为学 (Organizational Behavior,简称OB) 为例,这一学科过于关注微观层面的个人和群体的行为与特征,而对组织实践的理论见解则显得匮乏。具体而言,Heath and Sitkin (2001) 将OB研究划分为三类:一是以行为为核心的研究,即“小o大B”(oB),关注与组织相关的有趣行为;二是以组织情境为核心的研究,即情境化 OB 研究,探讨在组织情境中发生的行为;三是以任务组织化为核心的研究,即“大O小b”(Ob),强调聚焦将任务组织起来的关键行为。“大O”研究不仅能指导组织行为研究,更能为广泛的组织管理研究提供方向。组织管理学者要开展更贴近组织实践的研究,需要避免概念冗余和循环论证现象,打破学界脱“实”向“虚”的困境。
随着人工智能(AI)技术的迅速发展,组织中的资源配置、人员素质、组织结构、管理理念等发生了深刻变化。AI已不再仅仅是工具,而是深刻嵌入到组织运行逻辑中的新现象。这一现象为管理学研究提供了独特的机遇,同时也对传统理论构成了挑战。例如,AI技术正在重新定义人与技术的关系,不仅催生了更多关于人与AI协同合作的现实需求,也引发了对边界跨越、吸收能力、社会网络等理论的重新思考。
中国的快速发展为管理学研究提供了特殊土壤与情境化现象。当前,许多企业正处于向智能化转型的关键阶段。如何通过智能技术挖掘数据潜力、提升决策质量和运营效率成为企业亟须解决的问题。在此背景下,组织管理研究应聚焦真实世界现象,从人机协同实践中提炼出对组织成员或企业运作具有重要影响的理论经验,以此作为研究的起点和重点,开展符合“大O小b”(Ob)标准的研究。
Summary
The persistent disconnection between management theories and practices has been a longstanding concern in organizational research.This disconnection becomes particularly problematic in the era of Artificial Intelligence (AI),where technological advancements are fundamentally reshaping organizational elements and logic.Conducting phenomenon-based research on human-AI collaboration has emerged as a crucial pathway for advancing theoretical development and real-world impact.
This paper begins by reviewing the current state of human-AI research,identifying three emerging themes central to understanding human-AI dynamics:human reaction to AI,human-AI interaction,and human-AI collaboration.The “human reaction to AI” theme predominantly examines individual responses to AI (and AI-generated information) during episodic interactions,characterized by vignette-based scenarios where AI does not directly impact work-related outcomes.This body of literature can be categorized into two main streams:research on AI/algorithmic decision accuracy,focusing on human assessment of computational reliability and precision; and research on AI decision legitimacy,focusing on human acceptance of moral judgment.While these studies provide valuable insights into human trust formation and AI perception,they often lack ecological validity.The “human-AI interaction” theme investigates how AI directly influences work-related outcomes,also during episodic interactions.This body of research often adopts controlled laboratory settings,exemplified by studies on ChatGPT’s impact on professional writing output and human reasoning capabilities.These studies highlight the growing relevance of AI’s immediate impact on both individual and organizational performance,emphasizing the necessity of understanding how AI interacts with human work in real-time.The “human-AI collaboration” theme addresses the evolving nature of human-AI coexistence in workplaces.AI has increasingly become embedded in work processes,creating complex,real-world challenges about how humans and AI collaborate over time.This stream of research examines dynamic,longitudinal interactions where humans and AI systems reciprocally influence outcomes across multiple dimensions,including work design,learning strategies,and long-term performance.These studies,grounded in specific organizational contexts,identify theoretical mechanisms and intervention strategies through fieldwork.
To demonstrate how phenomenon-driven research advances theoretical development,this paper analyzes an exemplary ethnographic study from the Academy of Management Journal.This study reveals how researchers can construct robust theory by systematically investigating the human-machine interface as it unfolds within authentic organizational settings.It also illuminates how richly contextualized insights from immersive fieldwork can effectively bridge theoretical development with practical implications.
After reviewing existing studies on human and AI,we further revisit seminal theories in human-computer interaction literature.These classical frameworks advocate for a system-level perspective that considers technological integration within broader institutional structures and organizational dynamics.By tracing the evolution and enduring relevance of these foundational theories,we call for a theoretical approach that recognizes the deeply embedded and interconnected nature of human-AI collaboration within complex organizational ecosystems.The goal is to inspire contemporary researchers to embrace more holistic,context-sensitive approaches when investigating emerging human-AI phenomena.
Informed by the latest studies as well as grounded in cutting-edge integration of technology and organizational settings,we here propose several promising research avenues that shed light on both theoretical advancements and managerial applications.First,we encourage exploring how employee experience and collaboration with AI jointly interact,focusing on how different experience levels impact collaboration outcomes.We should further unravel how to enable employees to maximize AI’s potential as well as alleviate the negative side.Second,we suggest that future researches may investigate how AI feedback,trust,and job security concerns affect performance in complex tasks,and how adaptation to and dependency on AI may impact employees’ skill development in the longer term.Third,we encourage researchers to examine how distinct collaboration modes between AI and humans in different contexts could optimize performance.Last,researchers can delve into users’ responses to AI suggestions and explore mechanisms to balance trust in AI and independent judgments in terms of decision-making.
The era of AI requires management scholars to bridge the gap between theory and practices by updating,transforming and transcending existing research paradigms.By uncovering deeper insights into the intricate dynamics of human-AI interaction,we shall contribute to richer and more comprehensive theoretical layers and potentially great theoretical breakthroughs.
原文引用:张志学, 高雅琪, 梁宇畅, 李涵, 李航涛, 汤明月. 人机协同时代的机遇——开展现象驱动的组织管理研究[J]. 经济管理学刊, 2024, 3(4): 65-94.
点击左下角“阅读原文”,即可下载全文PDF
(苹果系统需复制到浏览器打开)
学刊订阅方式及更多论文下载,请登录学刊官网www.qjem.cn
*我们期待公众号原创稿件,来稿、合作、问题请联系:qjem-wx ;推广内容如有侵权请您告知,我们会在第一时间处理或撤销;转载仅供思考,不代表《经济管理学刊》立场;其他平台任何形式转载请注明(来源:经济管理学刊 )。
《经济管理学刊》是机械工业信息研究院和北京大学联合主办、机械工业出版社出版的经管领域综合性学术刊物。本刊编委会汇聚了来自国内外著名高校和研究机构的近90名经济管理领域的杰出学者,并由北京大学光华管理学院院长刘俏教授担任主编。
诚挚邀请国内外专家、学者赐稿。相信在国内外学术共同体的努力下,《经济管理学刊》将成为汇聚全球重要经管理论和思想的平台,为中国的经管学术思想再添新翼,助力中国大地涌现出更多世界级的经济学和管理学研究与思想。
投稿请登录本刊官网www.qjem.cn。
投稿咨询
刘欣欣:010-62747698
编辑部联系
朱鹤楼:010-88379001
侯振锋:010-88379708
邮 箱:qjem@qjem.cn
地 址:北京市西城区百万庄大街22号3号楼9层
学刊相关目录
文章编辑:侯曼迪;责任编辑:侯振锋;审核人:朱鹤楼