RIO 电 驱 动
专注于新能源汽车及三电相关领域知识和资讯的分享。
电驱动噪音与振动的源头,一般来自电机的电磁谐波、齿轮及花键啮合的机械振动、IGBT开关时发出的高频谐波等。优化方法一般从减少或削弱源头的振动载荷、提升刚度及阻尼、隔音降噪等。
电机-级槽配合
一般常用方案是8级48槽或6级54槽。电机转子在转动过程中,将在气隙处引起定转子磁场的周期性突变,形成8的倍数或6的倍数相关的大量径向及切向电磁力谐波分量。不同谐波的转动方向,与电机转子相同或相反。其环形方向分布,有0节点呼吸状、2节点、3节点、4节点等形式。该径向及切向脉动电磁力,推动电机定转子,又使电机、控制器、减速机等壳体,产生周期性快速振动引起噪音对外辐射。选择合适的级槽配合,可规避适当频段的噪音。但也需与成本、电机运行效率等角度权衡。
对于8级48槽电机,一般需重点关注0、8、24、48、72、96阶。6级54槽为0、6、18、36、54、72阶。
电机-非集中绕组
电机定子一般采用非集中绕组。其绕组数量较少,利于减少高频电磁谐波数量。但集中绕组方案的轴向尺寸更紧凑成本更低,需权衡利弊。
电机-转子斜级
大部分电驱动定子铜线采用扁线方案。其装配工艺需要将数百跟铜线轴向压入定子,故不宜采用定子斜级。转子斜级方案是铁心在轴向一般分段4段~8段。每一段在环向适当错位旋转2°~5°,可将特定谐波电磁力形成180°相位对消,从而减弱特定频率噪音。一般采用“一字”、“W形”、“V形”等方案。不同方案的电机动力性能和噪音表现不同,对轴承的推力也有差异。
电机-转子风扇气动性能优化
部分非油冷电机如奥迪E-tron、小鹏G7等,在转子平衡板处,集成设计了离心风扇结构,可适当降低定转子温度,但增加气动噪音风险及降低系统效率。可借助CFD技术进行结构优化,以减少气流分离与涡流脉动。
电机-定子真空浸漆
一般从成本及生产效率出发,大部分主流方案为定子滴漆工艺。如采用真空浸漆工艺,可将定子铜线与铁心更可靠固定,在明显利于散热的同时,显著增加定子总成刚度,以降低振动表现。
电机-转子磁钢非对称布置
以8级电机为例,常规设计转子8组(4对级)磁钢互相采用相同的圆心角间距。部分产品如通用汽车的Bolt,采用相邻磁级周期性宽窄间距的非对称圆心角布置,可适当对消特定谐波。
电机-铁心涂胶工艺
一般定转子铁心,采用铆压工艺及或轴向焊接工艺进行固定。带来漏电增加及运转效率降低的不足。如对铁心表面使用涂胶工艺,通过增加硅钢片互相的阻尼,从而耗散振动能量, 如特斯拉汽车。
电机-转子一体注塑
一般转子铁心采用分段注塑工艺,不同分段间无可靠固定。如采用一体注塑方案,可提升转子铁心的轴向刚度,以改善振动表现, 如联合电子及舍弗勒。
电机-定子气隙磁密优化
电磁谐波一般主要集中在定子铁心内径的浅表面和转子铁心外径的浅表面。可通过适当开槽及非对称设计,将特定电磁谐波分量降低。比如丰田普锐斯的定子齿根部,环向W形凹槽、通用沃兰达的定子齿,偶数齿较长奇数齿较短的非对称设计、联合电子的P2电机,每个定子齿内径侧开3组半圆形凹槽、BYD的每隔2个定子齿内径侧,开1组大半径扇形凹槽等。
电机-转子气隙磁密优化
对转子铁心外径侧,每对磁级的磁钢的隔磁桥附近,开1组或2组凹槽,可对特定谐波电磁力分量进行对消。或对转子铁心外径侧,每对磁级的磁钢的隔磁桥附近,采用不同的转子外径。
定转子气隙磁密优化,一般采用基于参数化优化的方法,通过多组开槽位置、尺寸、数量、形状的尺寸参数化设计,在数百个方案中寻找电磁性能最强、转矩脉动最小、特定电磁谐波分量最小、适合隔磁桥强度性能、容易冲压制造等综合最佳方案。当前几乎全部同行,均采用此技术。
电机-短距绕组
以8级48槽电机为例,整距方案的定子绕组为每48/8=8个定子槽对应圆心角,为一组绕组;短距为小于8。可对特定谐波电磁力分量进行对消。
电机-考虑PMW波形的电磁仿真
电磁性能仿真时,一般采用标准正弦波输入。据此计算的电磁谐波分量,可能有所缺失。可采用基于实际PWM波形的仿真,从而更准确复现电磁力,使后续优化精度更高。
电机-转子压装
合适的转子铁心压装工艺,可增强多段铁心间的刚度以减少振动。更神奇的是,还可对特定谐波电磁力分量进行对消。
电机-转子动平衡
采用高精度的动平衡工艺,减少转子的低阶机械振动,并降低轴承载荷。
电机-铁心与转轴过盈量优化
过盈量是最终结果,中间过程需要综合考虑铁心隔磁桥强度、电磁性能、过盈压装工艺等,并综合判断,最大过盈时,隔磁桥强度及铁心刚度合格及最小过盈时铁心与转轴结合量适当,同时过盈公差带利于制造等。另外,随着电机转速越来越高,对铁心隔磁桥强度要求更高。
现阶段,经笔者优化的多个项目的铁心结构,在过盈量合理、电磁性能几乎不下降、不采用高强度牌号的高成本硅钢片(如小米汽车的980Mpa抗拉强度)等基础上,将破坏性超速实验的极限转速与特定仿真方法的结果差异,控制到5%左右。
电机-定转子喷油量优化
对于油冷电机,通过高精度仿真与实验,在满足定转子散热与轴承润滑需求的基础上,尽量降低电机定转子及轴承油量消耗,以降低油泵功率需求,最终降低油泵噪音。
减速机-齿轮喷油量优化
通过高精度仿真与实验,在满足齿面与轴承润滑需求的基础上,尽量降低齿轮喷油量消耗,以降低油泵功率需求,最终降低油泵噪音。
减速机-齿形优化
使用齿轮设计专用仿真软件,进行不同工况下齿轮啮合过程的仿真,对齿面形状进行精细化调整,可降低齿面应力及接触压强,并优化接触压强分布至尽量均匀且对中分布,从而减少齿轮啮合时的机械振动载荷。
减速机-齿轮精密装配
通过合理设计尺寸公差及调整垫片厚度等,将齿轮系统偏心量及振动载荷,控制在合理量级。
减速机-齿轮模数优化
特定模数的齿轮在特定转速引起的谐波,可能与电机特定阶次电磁力谐波及控制器IGBT开关频率及其谐波,产生重叠及干扰。通过齿轮适当错频,以缓解该重叠产生的振动载荷增加。
减速机-油泵变速控制
油泵电机一般采用恒定转速控制。在电机低功耗运行时,油泵噪音较明显且不利于提升电驱动工作效率。可通过高精度仿真及实验标定,根据电机不同运行与发热工况,采用分段变转速控制策略,动态调节油泵电机转速,从而降低油泵噪音。
齿轮、各壳体及盖板等-拓扑优化
减速机齿轮的轮辐、减速机及电机壳体、控制器顶盖、电机弱电盖板等结构,可通过基于模态最强及重量最低的拓扑优化,得到最佳结构。其典型造型,对减速机部分如丰田普锐斯及特斯拉等、控制器顶盖如日电产及联合电子等、电机部分如麦格纳等。
控制器顶盖及电机弱电盖板-复合阻尼板
壳体拓扑优化一般采用 “硬碰硬”方法,通过提升特定模态的刚度减少共振。还可以通过 “以柔克刚”法,使用复合阻尼板方案,借助高阻尼材料与结构,消耗平板状结构的振动量级,但该方案成本较高。一般为三层复合板结构,如下图及比亚迪的钢板夹胶等;铝板内侧粘贴阻尼材料,如麦格纳等。
控制器与电机壳体柔性连接
早期蔚来汽车的电机,采用控制器与电机壳体安装点增加橡胶隔震垫及柔性高压电线及柔性密封结构等,将控制器壳体与来自电机的电磁谐波振动载荷适当隔离,并借助橡胶等高阻尼材料消振。
控制器-三相铜排的滤波器
控制器的IGBT在采用5Khz~15Khz高频开关运行时,将产生大量高频电磁谐波,引起顶盖的振动噪音。如特斯拉在控制器三相铜排与电机之间,增加一个环状非晶滤波器,可改善EMC性能并降低部分高频电磁谐波能量。
控制器-0扭控制策略
车速较低时,电机转速控制精度较差,存在一定扭矩波动。采用0扭控制算法,对电机适当增加正向扭矩,可使齿轮及花键保持可靠啮合,减少机械振动噪音。
控制器-主动谐波注入控制策略
采用对电机定子铜线主动输入与电机特定转速的谐波相反相位的电流,可适当对消中低转速的电磁噪音。
控制器-主动减震控制策略
电机加减速过程中,采用主动减震算法,可降低转速波动量,从而降低噪音。
控制器-分段变频载波频率控制策略
控制器的IGBT一般采用恒定的载波频率。在电机较低转速时,带来发热较大的浪费,同时电机+减速机+IGBT的各种振动谐波,在特定转速段,可能互相干扰叠加。可对不同转速采用不同的载波频率,以平衡能耗与振动噪音表现。
控制器-随机载波频率控制策略
控制器的IGBT一般采用恒定的载波频率。其可能在特定电机转速及频段有共振,且震动能量较为集中。通过随机化载波频率,将振动能量打散到较宽的时间宽度,使共振频段的振动能量减弱。
控制器-IGBT低电感封装
主流的HPD封装的IGBT成本较低,但杂散电感较大。可采用更紧凑的封装形式降低杂散电感,从而降低高频电磁噪音。
总成-换挡控制策略
P2架构的混合动力车型,如长城的坦克700 Hi-4T等。在变速箱换挡间隙,利用P2电机扭矩响应速度快的优点,在适当时机输出一定扭矩,可减少总体扭矩输出的波动性。
总成-声学包裹
以上技术与方法,几乎都是相对较低成本的。在为每一块钱拼搏的汽车行业,声学包裹这种高成本方案,是最后的无奈之举。
为了促进新能源汽车电驱动系统产业链上下游企业及专业人士交流,凌傲咨询与RIO电驱动特别推出“RIO凌傲人脉圈”小程序,免费注册,共享人脉。轻松找到你想要的人脉。
版权及免责声明:
1、如需转载或摘取,请在文章开头或结尾位置注明:内容来源自【RIO电驱动】公众号。
2、凡注明 “来源:XXX(非RIO电驱动)” 的作品,均转载或摘取自其它媒体,转载或摘取目的在于传递更多信息,并不代表本平台赞同其观点和对其真实性负责。
3、本文仅供读者参考、学习、交流,不得涉及商业目的使用,如违反上述要求,本平台有权要求删除,并依法追究其相应法律责任。
联系电话:021-57786005