活体拉曼成像新突破!Nature系列(IF:33)|复旦大学陆伟:合作提出新机理“堆叠诱导电荷转移增强拉曼散射”

文摘   2024-08-27 18:23   上海  

来自复旦大学“生命健康"领域最新的科研进展。面向世界科技前沿,践行行业使命感,助力基础研究,推广科技成果。服务行业,造福社会!


拉曼光谱是一种通过检测分子的非弹性光散射获取其分子振动和转动信息的光谱技术。作为荧光或其它成像方式的补充,拉曼光谱成像具有“指纹图谱”的高特异性、信号不易光漂白、易实现多重成像等优点,成为分析化学、材料科学和生物医学领域前景广阔的成像技术。但是,每1000万个入射光子中仅有1 个会发生拉曼散射,因而小分子的自发拉曼成像信号是极微弱、难以检测的。为增强信号,目前策略主要依赖于表面增强拉曼散射(SERS)技术,即通过在金、银等基底材料表面吸附拉曼小分子,使信号放大108-1011倍,以实现高灵敏成像。SERS技术自2006年用于活体成像以来获得了显著进展。然而这些SERS基底材料存在生物安全性问题成为长久以来制约拉曼光谱成像技术在活体生物医学应用及转化的瓶颈问题


2024年8月21日(当地时间),复旦大学药学院陆伟与上海交通大学医学院肖泽宇、中国科学院杭州医学所方晓红合作,于期刊Nature Biotechnology (IF:33.1发表题为“Self-stacked small molecules for ultrasensitive, substrate-free Raman imaging in vivo”的论文。该研究揭示了一类特定结构的小分子不需要依赖基底仅通过自身的有序堆叠现在活体中的高灵敏拉曼成像并提出一种新的拉曼散射增强机理-“堆叠诱导电荷转移增强拉曼散射(SICTERS)”。也为设计生物安全的高灵敏拉曼影像探针,推进拉曼影像分析技术的活体生物医学应用提供了新思路。

Nature Biotechnology在同期以“Small molecules self-organized in an orderly manner to enhance Raman signals(https://doi.org/10.1038/s41587-024-02350-9)为题,对该工作从领域问题科学发现未来方向等方面进行了详细的亮点介绍,并配发了国际同行专家的评价,认为“这个原创性的工作代表了活体拉曼生物成像技术的突破并有潜力将其应用于临床This original and innovative work represents a breakthrough for in vivo Raman bioimaging and its potential translation to clinical use.”


在该工作中研究团队揭示一类以双噻吩基取代作为供体(D)苯并双噻二唑作为受体(A)的共轭有机小分子(如BBT)。该类分子具有D-A-D的平面构象和平面内的多环振动模式;分子能够在空间中有序自堆叠,使其相邻分子间D和A单元的间距在3.6Å左右,促进了相邻分子供体D和受体A单元间在分子内及分子间的电荷转移。一个受体可以完全接收来自六个供体(D2-A--D4)的电子,其中包括两个分子内供体和四个分子间供体。同时,一个供体可以向三个受体(A-D--A2)提供电子,包括一个分子内受体和两个分子间受体(图1a)。这样的空间排列及相互作用重新调整了电荷分布,形成了新型的三维电荷转移,显著增加分子自身极化率,并增强拉曼散射。研究团队将此类增强拉曼散射定义为堆叠诱导电荷转移增强拉曼散射(SICTERS)


为实现活体生物医学应用,研究团队进一步开发了SICTERS探针——临床可用的DSPE-PEG辅料包覆的BBT纳米粒(BBT NPs)该纳米剂型显著提升了BBT在体内系统循环时的稳定性。此外,研究人员制备了与BBT NPs尺寸相近的SERS探针—金纳米粒(Au NPs),并进行了拉曼散射增强能力的定量比较。研究表明,基于SICTERS技术的BBT NPs每个粒子的拉曼散射截面是基于SERS技术的Au NPs的1350倍。重要的是,基于SICTERS技术的BBT探针在组织脏器中的分布水平随时间推移显著降低并经肝脏代谢粪便排出血液学及组织学分析也展示了生物安全性;而SERS技术的金探针在肝脏等组织脏器中长期滞留,难代谢消除。


最后,研究团队探索该技术用于活体术中微小肿瘤成像、无创淋巴回流成像及微小血管成像等生物医学应用。结果表明,SICTERS探针能以最低1mg/kg的给药剂量(相比SERS探针4mg/kg)实现术中对微小肿瘤的高分辨成像并指导切除降低术后复发及转移。重要的是,SICTERS探针能够活体无创的对淋巴回流及微小血管(~11微米)进行高分辨拉曼成像,这是SERS探针难以实现的(图1b)

图1. a) 堆叠诱导电荷转移增强拉曼散射(SICTERS)机理:具有D-A-D平面结构的小分子通过自身有序堆叠,促进了平面内和平面外的分子间电荷转移。该空间排列重新调整了电荷分布,实现了三维电荷转移,从而大大增加了共振拉曼散射;b) SICTERS探针用于活体术中微小肿瘤成像、非侵袭性淋巴回流成像,非侵袭性腹部皮下微小血管成像。


综上,SICTERS在活体拉曼成像分析方面具有两个显著优势首先,SICTERS不依赖于基底增强从而避免SERS可能带来的生物安全性问题其次SICTERS技术在活体成像的灵敏度空间分辨率和成像深度方面均优于SERS。SICTERS作为一种新的增强拉曼散射增强机理,为拉曼成像探针的分子设计提供了新的方向。


复旦大学药学院高帅博士、上海交通大学医学院张永明博士、崔凯助理研究员为该论文的共同第一作者。复旦大学陆伟教授、上海交通大学医学院肖泽宇教授、中国科学院杭州医学所方晓红研究员为该论文的共同通讯作者。


注:文中插图源于    Nature Biotechnology


原文链接:

https://doi.org/10.1038/s41587-024-02342-9


来    源       复旦大学药学院


近期活

近期进展

● 脂质纳米药物体内转运!Nature系列|复旦大学占昌友/江宽:揭示Kupffer细胞对脂质体药物肝内命运的主导作用

● 三登Science,破解人类卵子“密码”!复旦大学王磊/桑庆:揭秘人类卵母细胞纺锤体双极化机制

● 促进实体肿瘤细胞凋亡!eLife|复旦大学王陈继/王利新:合作揭示CRL5-WSB2 E3泛素连接酶复合体介导凋亡抵抗的分子机制

● 更优的circRNA CAR-T新疗法!bioRxiv|复旦大学章旭耀:合作发现无痕环状RNA CAR-T疗法显示更强的治疗效果

● 长效缓释的多功能纳米制剂!ACS Nano|复旦大学姚静:通过微创给药实现对黄斑变性长效缓释治疗

● 自身免疫性疾病研究新进展!Science系列|复旦大学查兵兵:揭示幽门螺杆菌感染与自身免疫性甲状腺疾病间的相互关系

● 临床癌症治疗新手段!Cell Res|复旦大学蓝斐/蔡加彬:报道核糖体蛋白L40甲基化修饰促进肝癌发生发展的机制

● 让肾癌诊断更精确!Eur Urol|复旦大学谢芳:合作发布晚期肾癌精准诊断新成果,CD70免疫PET/CT让转移性肾癌诊断更精确

● 心脏靶向肽纳米药物!Nature系列|复旦大学舒先红:合作开发新的可吸入心脏靶向肽修饰纳米药物,预防压力超负荷心力衰竭

● 从肠道宏基因组中识别病毒!Genome Biol|复旦大学赵兴明:合作研发新工具用于人类肠道宏基因组中识别病毒的语言学习框架


关于光华


复旦大学光华生命健康校友会是复旦大学校友总会正式登记注册成立的分支机构,是跨学科、跨界别、跨地域,覆盖生命健康领域的公益性行业校友组织。

光华生命健康校友会以推动中国生命健康领域的“科技创新”,提升人类健康为使命,以促进“产学研医用”的融合创新与资源整合为目标,力争建立具有行业影响力的交流合作平台。

华生命健康校友会始终致力于加强生命健康领域校友与母校之间的联系,以拓展校友社交网络,增强校友间互助协作,发掘领域内的科技创新成果,助力母校发展、助力校友成功、促进行业发展、造福社会大众为宗旨

会员以生命科学、医学、药学、附属医院等多个院系、医院的校友为基础,横跨化学、材料科学、信息科学、大数据、金融学、管理学等众多学科,立足上海、辐射全国,涵盖产业、学术、科研、医疗、政府、资本等“产学研医政资”的泛生命健康领域的专业人士。


有意入会的校友,可以填写以下申请表。

复旦大学校友会光华生命健康分会
“复旦大学校友总会光华生命健康分会”新媒体平台,传播生命健康领域“产研医”的最新知识与进展,促进产业界、科研界、医疗界的跨界交流与合作。助力母校发展、助力校友成功、促进行业发展、造福社会大众。
 最新文章