组合结构全寿命周期性能:火灾后内配型钢钢管混凝土柱中型钢-混凝土界面性能研究

文摘   科学   2024-10-13 22:48   甘肃  


引用格式:

Wang WD, Ma W, Ji SH, Shi YL. Investigation on post-fire bond behavior between section steel and concrete in SRCFST columns. Structures, 2024, 69: 107384.


Highlights:

1. The pushout tests on 22 post-fire SRCFST specimens were designed and conducted.

2. The bond behavior of section steel-concrete interface of SRCFST specimens was investigated.

3. A simplified bond strength-slip model of the section steel-concrete interface was proposed.

4. The FEA model on the bond behavior of post-fire SRCFST members was developed.

论文信息:

论文链接:https://doi.org/10.1016/j.istruc.2024.107384

论文50天免费下载链接(20241116)

https://authors.elsevier.com/c/1jqx58MoIH2cu4

DOI: 10.1016/j.istruc.2024.107384


一、研究背景

内配型钢钢管混凝土(Steel-reinforced concrete-filled steel tube,SRCFST)是在钢管混凝土(CFST)中配置型钢而形成的新型组合构件,其延性和耐火性能较CFST构件显著提升。在组合构件中,钢-混凝土的粘结性能影响着各部件间的协同作用,其是组合构件发挥优异力学性能的基础。火灾是最普遍、最严重的自然灾害之一,火灾损伤会导致钢-混凝土界面性能发生变化,进而影响组合构件的受力性能,研究组合构件中钢-混凝土之间的粘结性能十分必要,但目前关于火灾后SRCFST构件中型钢-混凝土界面性能的研究尚无报道。为此,本文完成了22个火灾后SRCFST试件的静力推出试验,并建立了型钢-混凝土界面全过程的简化粘结强度-滑移关系模型。



二、试验结果

共设计了22个SRCFST试件进行推出试验,包括4个常温试件及18个火灾后试件。试验参数包括:受火时间(t0:0min、30min、60min及90min);型钢尺寸(h:80mm和160mm);界面长度(L:300mm、450mm和600mm),以及加载方式(单调加载和分级加载)。试验测量内容包括试件的破坏形态、温度-时间曲线、以及全程荷载-滑移(P-S)曲线。试件截面示意如图1,试验分两个阶段,包括火灾试验和静态推出试验,火灾和推出试验装置分别如图2和图3所示。


图1 试件的截面示意及几何尺寸

图2 火灾试验装置

图3 推出试验装置


火灾试验结果表明:火灾作用后钢管表面形成红棕色氧化物,随着受火时间的增加,钢管表面的氧化层发生脱落(如图4)。火灾后试件的混凝土表面出现不同程度的裂缝,裂缝基本沿着靠近钢管的外围区域呈环向分布,其随着受火时间的增加逐渐增多。此外,内部混凝土存在明显的升温滞后,受火30min、60min和90min后,核心混凝土(测点3)经历的最高温度分别约达到253°C、423°C和589°C,钢管表面(测点4)经历的最高温度分别约达到598°C、773°C和959°C(如图5)。


图4 火灾后钢管与混凝土表面的破坏

图5 试件的温度-时间曲线


推出试验结果表明:SRCFST-1类试件在推出过程中混凝土裂缝较SRCFST-2类试件更多,裂缝主要出现在型钢翼缘端部,随着受火时间的增加,推出试验造成的混凝土裂缝数量减少,在试件的自由端,型钢表面有明显的混凝土划痕(如图6和7)。不同于型钢混凝土柱推出试验中混凝土的破坏,得益于外钢管良好的约束作用,所有SRCFST试件的混凝土在推出试验后仅产生细微的裂缝。型钢-混凝土界面处的混凝土表面产生明显划痕,随着受火时间的增加,混凝土划痕逐渐减少,表面裂缝逐渐增多(如图8)。


图6 加载端混凝土的破坏


图7 试件的自由端破坏对比

图8 界面处型钢与混凝土的破坏


从自由端的荷载-滑移(P-S)全过程曲线可见(如图9),对比试件的试验曲线吻合较好,常温下与高温后试件的荷载-滑移曲线形态相似,曲线可分为三个阶段:初始阶段(OA)、粘结破坏阶段(AB)和残余阶段(BC)。分析不同影响参数可见(如图10):随着受火时间的增加,试件的粘结强度呈现出先上升再降低的趋势;随着腹板高度的增加,试件的粘结强度逐渐降低;随着界面长度的增加,特征粘结强度逐渐增大;加载方式对型钢-混凝土界面粘结性能的影响不明显。


图9 试件自由端的荷载-位移曲线

图10 不同参数对粘结性能的影响



三、理论模型

通过典型的P-S曲线模型,以升温时间、界面长度以及型钢尺寸为主要参数,分析得到各因素对初始粘结强度、极限粘结强度以及各自对应的滑移值的相互关系,并建立了火灾后SRCFST构件中型钢-混凝土界面的粘结强度-滑移曲线模型,如图11。


图11 P-S and τ-S曲线模型


基于建立的理论模型,采用ABAQUS有限元软件中的非线性弹簧单元和热-力顺序耦合方法建立了火灾后SRCFST柱中型钢-混凝土界面性能分析的数值模型(如图12),并基于该模型分析了火灾后SRCFST试件(SRCFST-1-60a)中型钢-混凝土界面的应力分布和变化规律(如图13和14)。


图12 有限元分析模型

图13 特征点对应时刻各部件应力分布

图14 特征点对应时刻应力沿长度方向的分布规律



四、结论

Conclusions

1







与常温下SRCFST构件相比,火灾后构件中型钢-混凝土界面仍表现出良好的粘结性能,试件的荷载-滑移曲线可分为初始阶段、粘结破坏阶段和残余阶段。

2






 随着受火时间从30min增加到60min和90min,试件的平均极限粘结强度分别降低48.3%和69.5%;当型钢腹板高度与翼缘板宽度之比从1.0升至2.0时,极限粘结强度降低40%。

3






当界面长度从300mm增加到600mm时,初始和极限粘结强度分别增加136.7%和91.4%;加载方式对型钢-混凝土界面粘结强度的影响不明显。

4






 提出了火灾后SRCFST构件中型钢-混凝土界面的全过程粘结强度-滑移模型,建立了火灾后构件中型钢-混凝土界面粘结行为的有限元分析模型,预测与试验结果吻合较好。



六、相关文献


[1] Ji SH, Wang WD*, Chen WS, Shi YL, Xian W. Lateral impact behaviour of post-fire steel-reinforced concrete-filled steel tubular members: Experiment and evaluation method. Engineering Structures, 2023,293: 116612.
[2] Ji SH, Wang WD*, Chen WS, Wang R, Shi YL. Experimental and numerical investigation on the lateral impact responses of CFST members after exposure to fire. Thin-Walled Structures, 2023, 190: 110968.
[3] Ji SH, Wang WD*, Xian W. Impact and post-impact behaviours of steel-reinforced concrete-filled steel tubular columns after exposure to fire. Structures, 2022, 44: 680-697.
[4] Mao WJ, Wang WD*, Zhou K. Investigation on fire resistance of steel-reinforced concrete-filled steel tubular columns subjected to non-uniform fire. Engineering structures, 2023, 280: 115653.
[5] Mao WJ, Wang WD*, Zhou K. Fire performance on steel-reinforced concrete-filled steel tubular columns with fire protection. Journal of Constructional Steel Research, 2022, 199: 107580.
[6] Mao WJ, Wang WD*, Zhou K, Du EF. Experimental study on steel-reinforced concrete-filled steel tubular columns under the fire. Journal of Constructional Steel Research, 2021, 185: 106867.
[7] Mao WJ, Wang WD*, Xian W. Numerical analysis on fire performance of steel-reinforced concrete-filled steel tubular columns with square cross-section. Structures, 2020, 28: 1-16.
[8] 纪孙航,王文达*,赵晖,王蕊,史艳莉.火灾后内配型钢方钢管混凝土构件侧向撞击性能试验研究[J]. 建筑结构学报,2024,45(3): 148-159.

 作者简介



马伟:男,甘肃人,硕士。主要从事钢与混凝土组合结构静力性能研究。


2021.09-2024.06,兰州理工大学结构工程专业,硕士研究生(导师:王文达教授)





纪孙航:男,陕西人,博士研究生。主要从事钢管混凝土组合结构抗火及抗冲击研究。


2018.09-2020.08,兰州理工大学土木工程学院结构工程专业,硕士研究生(导师:史艳莉教授)

2020.09-,兰州理工大学土木工程学院结构工程专业,博士研究生(导师:王文达教授)




       相关研究

           (可点击进入)











Part.1

组合结构连续性倒塌

1.组合结构连续性倒塌:次边柱失效下钢管混凝土组合框架抗连续性倒塌性能

2.组合结构连续性倒塌:钢管混凝土柱-组合梁节点抗连续性倒塌性能

3.组合结构连续性倒塌:简化多尺度模型在组合框架连续倒塌研究中的应用

4.组合结构连续性倒塌:装配式钢管混凝土柱-组合梁节点抗连续性倒塌性能

5.组合结构抗连续倒塌:钢管混凝土组合框架-装配式拉伸钢支撑结构抗连续倒塌性能研究

6.组合结构抗连续倒塌:全填充墙钢管混凝土组合框架抗连续倒塌性能研究

7.组合结构抗连续倒塌:冲击荷载下钢管混凝土柱-组合梁节点的抗连续倒塌性能研究

8.组合结构抗连续倒塌:钢管混凝土框架-RC剪力墙结构抗连续倒塌试验研究

9.组合结构抗连续倒塌:基于简化多尺度模型的钢管混凝土空间框架抗连续倒塌性能研究

10.组合结构抗连续倒塌:钢管混凝土框架-填充墙结构抗倒塌机制与加固策略

Part.2

组合结构全寿命周期性能

1.组合结构全寿命周期性能:钢管初应力对内配型钢圆钢管混凝土受压构件力学性能影响

2.组合结构全寿命周期性能:施工初应力对内配型钢圆钢管混凝土压弯构件力学性能影响

3.组合结构全寿命周期性能:方套圆中空夹层钢管混凝土构件剪切性能 

4.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——短柱轴压性能

5.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——偏压性能

6.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——纯弯性能

7.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压弯构件滞回性能

8.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压扭性能

9.组合结构全寿命周期性能:长期荷载作用下内配型钢方钢管混凝土力学性能研究

10.组合结构全寿命周期性能:双钢管混凝土长柱轴压和偏压性能研究

11.组合结构全寿命周期性能:内配型钢钢管混凝土压弯构件在单调及往复荷载下的受力性能
12.组合结构全寿命周期性能:钢管初应力和长期荷载共同作用下内配型钢圆钢管混凝土受压性能研究
13.组合结构全寿命周期性能:考虑钢管初应力的内配型钢钢管混凝土柱徐变性能研究
14.组合结构全寿命周期性能:基于机器学习的圆中空夹层钢管混凝土柱轴压承载力预测
15.组合结构全寿命周期性能:双钢管混凝土构件滞回性能试验与分析
16.组合结构全寿命周期性能:考虑长期荷载和钢管初应力作用下内配型钢钢管混凝土短柱的力学性能

Part.3

混合结构抗震性能

1.混合结构抗震性能:钢管混凝土伸臂桁架-核心筒体剪力墙空间节点抗震性能试验研究

Part.4

组合结构撞击性能

1.组合结构撞击性能:火灾下方钢管混凝土柱侧向撞击性能研究

2.组合结构撞击性能:火灾后内配型钢钢管混凝土柱侧向撞击和撞后性能研究

3.组合结构撞击性能:火灾后钢管混凝土构件侧向撞击性能试验和数值研究

4.组合结构撞击性能:火灾后内配型钢钢管混凝土构件侧向撞击性能试验研究
5.组合结构撞击性能:受火后内配型钢方钢管混凝土构件抗侧向撞击性能试验研究

Part.5

组合结构抗火性能

1.组合结构抗火性能:震损后方钢管混凝土柱耐火性能试验研究

2.组合结构抗火性能:带防火保护层的内配型钢钢管混凝土柱耐火性能分析

3.组合结构抗火性能:内配型钢钢管混凝土柱耐火性能试验研究

4.组合结构抗火性能:非均匀受火的内配型钢钢管混凝土柱耐火性能分析

5.组合结构抗火:内配型钢钢管混凝土柱在荷载和温度共同作用后的剩余力学性能研究

Part.6

装配式钢筋混凝土结构

1.装配式钢筋混凝土结构:人工可控塑性铰钢节点变形机制研究

2.装配式钢筋混凝土结构:仿生钢铰梁柱节点抗震及修复性能试验研究

Part.7

新型高性能结构材料

1.新型高性能结构材料:高温后碳纳米管增强混凝土的抗冲击性能

Part.8

新型吸能结构

1.新型吸能结构:蜂窝吸能板提升停车结构防撞性能研究

2.新型吸能结构:仿生波纹夹层管耐撞性能研究和多目标优化

Part.9

风电工程结构

1.风电工程结构:单桩式中空夹层钢管混凝土风电塔体系在风-浪-震耦合作用下的动态响应分析

2.风电工程结构:带PBL肋板的中空夹层钢管混凝土界面粘结性能研究

3.风电工程结构:中空夹层钢管混凝土风力发电机塔筒低周疲劳性能研究




课题组主要成果











Part.1

组合结构连续性倒塌

[1]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse mechanism and reinforcement methods of composite frame with CFST columns and infill walls. Journal of Constructional Steel Research, 2023, 208: 108022.

[2]. Wang Wen-Da*, Zheng Long*, Xian Wei. Simplified multi-scale simulation investigation of 3D composite floor substructures under different column-removal scenariosJournal of Constructional Steel Research, 2023,208: 108002.

[3]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse performance of concrete-filled steel tubular composite frame with RC shear walls under middle column removal. Journal of Building Engineering, 2023, 64: 105611.

[4]. Wang Wen-Da*, Zheng Long, Xian Wei. Performance of the CFST column to composite beam connection under static and impact loads. Journal of Constructional Steel Research, 2022,198: 107567.

[5]. 王景玄*,杨永,孙衍浩. 全填充墙钢管混凝土组合框架抗连续倒塌性能研究[J]. 土木工程学报,2022,55(8): 11-13.

[6]. Wang Jing-Xuan, Shen Ya-Jun, Gao Shan*, Wang Wen-Da. Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal. Engineering Structures, 2022, 266: 114635.

[7].Zheng Long, Wang Wen-Da*, Xian Wei. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connection with CFST column and composite beam. Engineering Structures, 2022, 256: 114061.

[8].Zheng Long, Wang Wen-Da*. Multi-scale numerical simulation analysis of CFST column-composite beam frame under a column-loss scenario. Journal of Constructional Steel Research, 2022, 190: 107151.

[9].Zheng Long, Wang Wen-Da*, Li Hua-Wei. Progressive collapse resistance of composite frame with concrete-filled steel tubular column under a penultimate column removal scenario. Journal of Constructional Steel Research, 2022, 189: 107085.

[10].王景玄*,杨永,周侃,李秋颖. 角柱失效下钢管混土柱-组合梁框架抗连续倒塌能力研究. 工程力学,2022,39(5):105-118.

[11].Wang Jiang-Xuan*, Yang Yong, Xian Wei, Li Qiu-Ying. Progressive collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted-welded hybrid connection. International Journal of Steel Structures, 2020, 20(5), 1618-1635.

[12].Wang Wen-Da*, Zheng Long, Li Hua-Wei. Experimental investigation of composite joints with concrete-filled steel tubular column under column removal scenario. Engineering Structures, 2020, 219: 110956.

[13].郑龙,王文达*,李华伟,李天昊.钢管混凝土柱-钢梁穿心螺栓外伸端板式节点抗连续倒塌性能研究.建筑结构学报,2019,40(11): 140-149

[14].Shi Yan-Li, Zheng Long, Wang Wen-Da*. The influence of key component characteristic on the resistance to progressive collapse of composite joint with the concrete-filled steel tubular column and steel beam with through bolt-extended endplate. Frontiers in Materials, 2019, 6: 64.

[15].王文达*,郑龙,魏国强.穿心构造的钢管混凝土柱-钢梁节点抗连续性倒塌性能分析与评估.工程科学与技术,2018,50(6): 39-47.

[16].王景玄,王文达*,李华伟.钢管混凝土平面框架子结构抗连续倒塌精细有限元分析.工程力学,2018,35(6): 105-114.

[17].王景玄,王文达*,李华伟.采用静-动力转换方法的钢管混凝土框架受火倒塌非线性分析.工程科学与技术,2017,49(4): 53-60.

[18].Wang Wen-Da*, Li Hua-Wei, Wang Jing-Xuan. Progressive collapse analysis of concrete-filled steel tubular column to steel beam connections using multi-scale model. Structures, 2017, 9: 123-133.

[19].史艳莉,石晓飞,王文达*,王景玄,李华伟.圆钢管混凝土柱-H钢梁内隔板式节点抗连续倒塌机理研究.振动与冲击,2016,35(19):148-155.

[20].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.

Part.2

组合结构撞击性能

[1].纪孙航,王文达*,赵晖,王蕊,史艳莉.受火后内配型钢方钢管混凝土构件抗侧向撞击性能试验研究.建筑结构学报,2024,45(3):148-159.

[2].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Shi Yan-Li*, Xian Wei. Lateral impact behaviour of post-fire steel-reinforced concrete-filled steel tubular members: Experiment and evaluation methodEngineering Structures2023, 293: 116612.

[3].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Xian Wei, Wang Rui, Shi Yan-Li*Experimental and numerical investigation on the lateral impact responses of CFST members after exposure to fire. Thin-Walled Structures2023, 190: 110968.

[4].Ji Sun-Hang, Wang Wen-Da*, Xian Wei. Impact and post-impact behaviours of steel-reinforced concrete-filled steel tubular columns after exposure to fire. Structures, 2022, 44: 680-697.
[5].Ji Sun-Hang, Wang Wen-Da*, Xian Wei. Lateral impact behaviour of square CFST columns under fire condition. Journal of Constructional Steel Research, 2022, 196: 107367.
[6].王文达*,陈振幅,纪孙航.长期持荷工况下钢管混凝土构件的抗撞击性能研究.爆炸与冲击,2021,41(8): 083106.
[7].纪孙航,王文达*,鲜威.CFRP加固火灾作用后圆钢管混凝土构件的侧向撞击性能研究.工程力学,2021,38(8): 178-191.
[8].纪孙航,史艳莉,王文达*.火灾作用后钢管混凝土构件侧向撞击性能研究.振动与冲击,2021,40(4): 179-187.

[9].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*. Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular (SRCFST) members subjected to lateral impact. Thin-Walled Structures, 2021, 160: 107409.

[10].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*, Wang Rui. Investigation on the lateral impact responses of circular concrete-filled double-tube (CFDT) members. Composite Structures, 2021, 255: 112993.

[11].Xian Wei, Wang Wen-Da*, Wang Rui, Chen Wen-Su, Hao Hong. Dynamic response of steel-reinforced concrete-filled circular steel tubular members under lateral impact loads. Thin-Walled Structures, 2020, 151: 106736.

[12].史艳莉,纪孙航,王文达*,郑龙.高温作用下钢管混凝土构件侧向撞击性能研究.爆炸与冲击,2020,40(4): 043303.

[13].史艳莉,鲜威,王蕊,王文达*.方套圆中空夹层钢管混凝土组合构件横向撞击试验研究.土木工程学报,2019,52(12): 11-21.

[14].史艳莉,何佳星,王文达*,鲜威,王蕊.内配圆钢管的圆钢管混凝土构件耐撞性能分析.振动与冲击,2019,38(9): 123-132.

Part.3

组合结构抗火

[1].Wang Wen-Da*Mao Wen-Jing, Zhou Kan. Experimental investigation on residual capacity of steel-reinforced concrete-filled thin-walled steel tubular columns subjected to combined loading and temperature. Thin-Walled Structures, 2024, 197: 111557.

[2].Mao Wen-Jing, Zhou Kan, Wang Wen-Da*. Investigation on fire resistance of steel-reinforced concrete-filled stell tubular columns subjected to non-unform fire. Engineering structures, 2023, 280: 115653.

[3].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan. Fire performance on steel-reinforced concrete-filled steel tubular columns with fire protection. Journal of Constructional Steel Research, 2022, 199: 107580.

[4].魏国强,王文达*,毛文婧.震损后方钢管混凝土柱耐火性能试验研究.建筑结构学报,2022,43(12):123-134.

[5].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan, Du Er-Feng. Experimental study on steel-reinforced concrete-filled steel tubular columns under the fire. Journal of Constructional Steel Research, 2021, 185: 106867.

[6].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85,DOI: 10.6052/j.issn.1000-4750.2020.05.0259

[7].Mao Wen-Jing, Wang Wen-Da*, Xian Wei. Numerical analysis on fire performance of steel-reinforced concrete-filled steel tubular columns with square cross-section. Structures, 2020, 28: 1-16.

[8].Xu Lei*, Wang Ming-Tao, Bao Yan-Hong, Wang Wen-Da. Numerical analysis on structural behaviors of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to 3-side fire. International Journal of Steel Structures, 2017, 17(4): 1515-1528.

[9].Bao Yan-Hong, Xu Lei*, Wang Wen-Da, Sun Jian-Gang. Numerical analysis on mechanical property of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to ISO-834 standard fire. International Journal of Steel Structures, 2017, 17(4): 1561-1581.

[10].王景玄,王文达*.考虑火灾全过程的钢管混凝土柱-组合梁平面框架受力性能分析.振动与冲击,2014, 33(11): 124-129+135.

[11].王景玄,王文达*.不同火灾工况下钢梁-钢管混凝土柱平面框架受火全过程分析.建筑结构学报,2014,35(3): 102-109.

Part.4

组合结构抗震

[1].Rui Jia, Xian Wei, Wang Wen-Da*, Zhu Yan-Peng, Wang Jing-Xuan. Experimental study on seismic behaviour of the outrigger truss-core wall spatial joints with peripheral CFST columns. Structures, 2022, 41: 1014-1026.

[2].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.

[3].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85.

[4].王凤,王文达*,史艳莉.钢管混凝土框架柱计算长度研究.工程力学,2015,32(1): 168-175.

[5].王文达*,魏国强,李华伟.钢管混凝土框架-RC剪力墙混合结构滞回性能分析.振动与冲击,2013, 32(15): 45-50.

[6].王文达*,史艳莉,文天鹏.钢框架平端板连接组合节点弯矩-转角关系.振动与冲击,2013,32(10):43-49+68.

[7].史艳莉,王文达,靳垚.考虑墙体作用的低层冷弯薄壁型钢轻型房屋住宅体系弹塑性动力分析.工程力学,2012,29(12): 186-195.

[8].Han Lin-Hai, Wang Wen-Da, Tao Zhong. Performance of circular CFST column-to-steel beam frames under lateral cyclic loading. Journal of Constructional Steel Research, 2011, 67(5): 876-890.

[9].曲慧,王文达.钢管混凝土梁柱连接节点弯矩-转角关系实用计算方法研究.工程力学,2010,27(5): 106-114.

[10].王文达,韩林海.钢管混凝土柱-钢梁平面框架的滞回关系.清华大学学报(自然科学版),2009,49(12): 1934-1938.

[11].王文达,韩林海.钢管混凝土框架力学性能的简化二阶弹塑性分析.清华大学学报(自然科学版),2009,49(9): 1455-1458.

[12].Wang Wen-Da, Han Lin-Hai, Zhao Xiao-Ling. Analytical behavior of frames with steel beam to concrete-filled steel tubular column. Journal of Constructional Steel Research, 2009, 65(3): 497-508.

[13].王文达,韩林海.钢管混凝土框架力学性能的非线性有限元分析.建筑结构学报,2008,29(6): 75-83.

[14].王文达,韩林海.钢管混凝土框架实用荷载-位移恢复力模型研究.工程力学,2008,25(11): 62-69.

[15].Wang Wen-Da, Han Lin-Hai, Uy Brian. Experimental behaviour of steel reduced beam section (RBS) to concrete- filled CHS column connections. Journal of Constructional Steel Research, 2008, 64(5): 493-504.

[16].Han Lin-Hai, Wang Wen-Da, Zhao Xiao-Ling. Behaviour of steel beam to concrete-filled SHS column frames: Finite element model and verifications. Engineering Structures, 2008, 30(6): 1647-1658.

[17].王文达,韩林海,游经团.方钢管混凝土柱-钢梁外加强环节点滞回性能的实验研究,土木工程学报,2006,39(9):17-25.

[18].王文达,韩林海,陶忠.钢管混凝土柱-钢梁平面框架抗震性能的试验研究.建筑结构学报,2006,27(3):48-58.

Part.5

组合结构全寿命周期性能

[1].Wang WD, Ma W, Ji SH, Shi YL. Investigation on post-fire bond behavior between section steel and concrete in SRCFST columns. Structures, 2024, 69: 107384.

[2].Wu Xiao-Ming, Shi Yan-Li*, Zheng Long, Wang Wen-Da*. Performance of rectangular SRCFST stub columns under long-term loading and preload on steel tubeStructures, 2024, 61: 106110.

[3].王文达,陈亚明,纪孙航,史艳莉.双钢管混凝土构件滞回性能试验与分析[J].建筑结构学报,2023,45(1):128-138.

[5].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.

[6].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Zheng Long. Numerical studies on creep behaviour of SRCFST columns with initial stress of steel tube. Journal of Constructional Steel Research, 2023, 201: 108214.

[7].Wang Wen-Da*, Jia Zhi-Lu, Xian Wei, Shi Yan-Li. Performance of SRCFST member under long-term loading and preload on steel tube. Journal of Building Engineering, 2023, 73: 106700.

[8].Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Shi Yan-Li*. Cyclic and monotonic behaviour of steel-reinforced concrete-filled steel tubular columns. Thin-Walled Structures, 2023, 185: 110644.

[9].Wang Wen-Da*, Ji Sun-Hang, Shi Yan-Li. Experimental and numerical investigations on concrete-filled double-tubular slender columns under axial and eccentric loading. Journal of Constructional Steel Research, 2023, 201: 107714.

[9].Jia Zhi-Lu, Wang Wen-Da*, Shi Yan-Li, Xian Wei. Performance of steel-reinforced concrete-filled square steel tubular members under sustained axial compression loading. Engineering Structures, 2022, 263: 114464.

[10].贾志路,史艳莉,王文达*,鲜威.钢管初应力对内配型钢的圆钢管混凝土柱受压性能影响.建筑结构学报,2022,43(6): 63-74.

[11].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Xian Wei. Compression-bending behaviour of steel-reinforced concrete-filled circular steel tubular columns with preload. Structures, 2022, 36: 892-911.

[12].Jia Zhi-Lu, Shi Yan-Li, Xian Wei, Wang Wen-Da*. Torsional behaviour of concrete-filled circular steel tubular members under coupled compression and torsion. Structures. 2021, 34: 931-946.

[13].王文达*,纪孙航,史艳莉,张宸.内配型钢方钢管混凝土构件压弯剪性能研究.土木工程学报,2021,54(1): 76-87.

[14].Shi Yan-Li, Jia Zhi-Lu, Wang Wen-Da*, Xian Wei, Tan Ee Loon. Experimental and numerical study on torsional behaviour of steel-reinforced concrete-filled square steel tubular members. Structures, 2021, 32: 713-730.

[15].Wang Wen-Da*, Ji Sun-Hang, Xian Wei, Shi Yan-Li. Experimental and numerical investigations of steel-reinforced concrete-filled steel tubular members under compression-bending-shear loads. Journal of Constructional Steel Research, 2021, 181: 106609.

[16].Wang Wen-Da*, Xian Wei, Hou Chao, Shi Yan-Li. Experimental investigation and FE modelling of the flexural performance of square and rectangular SRCFST members. Structures, 2020, 27: 2411-2425.

[17].Wang Wen-Da*, Jia Zhi-Lu, Shi Yan-Li, Tan Ee Loon. Performance of steel-reinforced circular concrete-filled steel tubular members under combined compression and torsion. Journal of Constructional Steel Research, 2020, 173: 106271.

[18].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Mechanical behaviour of circular steel-reinforced concrete-filled steel tubular members under pure bending loads. Structures, 2020, 25: 8-23.

[19].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Experimental performance of circular concrete-filled steel tubular members with inner profiled steel under lateral shear load. Engineering Structures, 2019, 201: 109746.

[20].史艳莉*,周绪红,鲜威,王文达.无端板矩形钢管混凝土构件基本剪切性能研究.工程力学,2018,35(12): 25-33.

[21].王文达,于清.混凝土浇筑过程中方钢管柱的力学性能.清华大学学报(自然科学版),2013,53(1):6-11.

Part.6

中空夹层钢管混凝土结构

[1].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.

[2].Fan Jia-Hao, Wang Wen-Da*, Shi Yan-Li, Ji Sun-Hang. Torsional behaviour of tapered CFDST members with large void ratio. Journal of Building Engineering, 2022, 52: 104434.

[3].Shi Yan-Li, Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Fan Jia-Hao. Axial compressive behaviour of tapered CFDST stub columns with large void ratio. Journal of Constructional Steel Research, 2022, 191: 107206.

[4].Duan Li-Xin, Wang Wen-Da*, Xian Wei, Shi Yan-Li. Shear response of circular-in-square CFDST members: Experimental investigation and finite element analysis. Journal of Constructional Steel Research, 2022, 190: 107160.

[5].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.

[6].Wang Wen-Da*, Fan Jia-Hao, Shi Yan-Li, Xian Wei. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending. Journal of Constructional Steel Research, 2021, 182: 106689.

[7].史艳莉,张超峰,鲜威,王文达*.圆锥形中空夹层钢管混凝土偏压构件受力性能研究.建筑结构学报,2021,42(5): 155-164+176.

Part.7

纤维模型与子程序开发等

[1].Tao Zhong*, Katwal Utsab, Uy Brian, Wang Wen-Da. Simplified nonlinear simulation of rectangular concrete-filled steel tubular columns. ASCE Journal of Structural Engineering, 2021, 147(6): 04021061.

[2].Shi Yan-Li*, Li Hua-Wei, Wang Wen-Da, Hou Chao. A fiber model based on secondary development of ABAQUS for elastic-plastic analysis. International Journal of Steel Structures, 2018, 18(5): 1560-1576.

[3].Katwal Utsab, Tao Zhong*, Hassan Md Kamrul, Wang Wen-Da. Simplified numerical modeling of axially loaded circular concrete-filled steel stub columns. ASCE Journal of Structural Engineering, 2017, 143(12): 04017169.

[4].王文达*,魏国强.基于纤维模型的型钢混凝土组合剪力墙滞回性能分析.振动与冲击,2015,35(6):30-35.

[5].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.

[6].王文达*,杨全全,李华伟.基于分层壳单元与纤维梁单元组合剪力墙滞回性能分析.振动与冲击,2014, 33(16):142-149.

[7].李华伟,王文达*.ABAQUS二次开发在钢管混凝土结构有限元分析中的应用.建筑结构学报,2013,34(s1):353-358.

Part.8

装配式钢筋混凝土结构

[1].Yuan YJ, An AH, Wang WD, Shi YL, He ZH. Experimental research on the seismic and repair performance of steel beam-column joint with replaceable bio-inspired hinge. Journal of Constructional Steel Research, 2024, 223: 109032.

[2].Yuan Yu-Jie, Wang Wen-Da*, Huang Hua. Deformation mechanism of steel artificial controllable plastic hinge in prefabricate frame. Journal of Constructional Steel Reserarch, 2023, 201: 107735.

Part.9

新型高性能结构材料

[1].Gao Fang-Fang, Tian Wei, Wang Wen-Da*. Residual impact resistance behavior of concrete containing carbon nanotubes after exposure to high temperatures. Construction and Building Materials, 2023, 366: 130183. 

Part.10

新型吸能结构

[1].Zheng Long, Li Fu-Qi, Wang Wen-Da*, Shi Yan-Li*. Bionic corrugated sandwich cylindrical tubes subjected to transverse impact. Structures, 2024, 64: 106599.

[2].Zheng Long, Li Fu-Qi, Wang Wen-Da*. A honeycomb panel-based protective device for steel parking structure against transverse impact. Journal of Constructional Steel Research, 2023, 211: 108203.

Part.11

风电工程结构

[1].Fan Jia-Hao, Wang Wen-Da, Shi Yan-Li, Zheng Long. Low-cycle fatigue behaviour of concrete-filled double skin steel tubular (CFDST) members for wind turbine towers. Thin-Walled Structures2024205: 112384.

[2].Shi Yan-Li, Ren Jia-Xing, Fan Jia-Hao, Wang Wen-Da, Wang Hai-Cui*. Bonding-slip behaviour of steel-concrete interfaces in CFDST members with PBL ribs. Engineering Structures, 2024, 314: 118384.

[3].Duan Li-Xin, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Dynamic response analysis of monopile CFDST wind turbine tower system under wind-wave-seismic coupling action. Thin-Walled Structures, 2024, 202: 112089.






编辑:郑   龙

审核:王文达


+

+

王文达课题组

微信号|wangwd_group

兰州理工大学土木工程学院王文达课题组


点击蓝字 阅读原文

+

王文达课题组
兰州理工大学土木工程学院王文达教授课题组公众号,主要进行钢与混凝土组合结构混合结构、钢结构及结构抗火研究、工程技术咨询等。
 最新文章