引用格式:
Duan LX, Wang WD, Zheng L, Shi YL. Dynamic
response analysis of monopile CFDST wind turbine tower system under
wind-wave-seismic coupling action. Thin-Walled Structures, 2024, 202: 112089.
Highlights:
1. Very limited studies on the CFDST wind
turbine tower system have been carried out.
2. The dynamic response of CFDST wind turbine towers is numerically investigated.
3. The effects of seismic incidence angles and various loads are discussed.
4. A comparative study on the CFDST towers and traditional steel towers is conducted.
论文信息:
论文链接:https://doi.org/10.1016/j.tws.2024.112089
论文50天免费下载链接(至2024年8月4日):https://authors.elsevier.com/c/1jGNrx-8Rbm75
DOI: 10.1016/j.tws.2024.112089
一、研究背景
在全球气候变暖等生态问题突出的背景下,为实现低碳可持续发展,风电作为清洁能源,在重塑能源体系结构、减少 CO2 排放等方面具有重要作用,传统风力发电机组大多为锥形的单管钢薄壁细长结构,该类结构在叶轮转动及外界随机荷载激励下容易发生频繁振动,不利振动会影响风能的转化,降低发电效率,极端条件下甚至直接造成塔筒结构失效破坏。随着MW级风电塔的发展,风电塔尺寸逐步增大,传统钢管结构已不再满足大尺寸海上风电塔的要求。
中空夹层钢管混凝土是在传统实心圆钢管混凝土的基础上发展起来的一种新型的钢管混凝土结构形式,其截面开展、抗弯刚度大,自重轻、抗震性能好,常见截面形式如图1所示。根据其力学性能的特点,将其运用于风力发电塔等长细比较大、轴向荷载较小、具有耐撞性、侧向抗弯要求较高的工程当中,具有较好的应用前景。
图1 中空夹层钢管混凝土构件常见截面形式
高耸的海上风力机塔架属典型顶部大质量集中的细长弹性体的力学结构,与传统土木建筑结构差异巨大,极易受到地震影响。此外,在风载荷作用下,风轮受到的气动载荷会以弯矩和扭矩的形式传至基础。两种载荷同时作用极易使塔架载荷超出设计极限,从而发生如图2所示的局部屈曲而导致整机倒塌的破坏现象。
图2 地震发生时风力机结构损伤和破坏
单桩式基础是海上风电塔在浅水深度最常见基础形式,该类基础结构简单,施工方便,具有较好承载力和稳定性,常见海上单桩式基础如图3所示。此类结构形长期遭受风、浪、流等复杂环境荷载作用,容易产生塔架振动猛烈、基础累积疲劳损伤加剧等问题,为风电机组电能的可持续输出带来巨大的隐患。因此,开展近海风电结构的复杂耦合动态响应研究、掌握结构时变振动机理具有重要意义。
图3 海上单桩式基础
采用OpenFAST和ABAQUS对中空夹层钢管混凝土风电塔体系和作为对照组的钢结构风电塔体系进行多灾耦合作用下的动态响应分析。在验证模拟方法合理的基础上对比了两类风电塔在地震作用下、风浪耦合作用下及风-浪-震耦合作用下的动态响应。并分析了风荷载和波浪荷载对塔顶位移、加速度的影响。结果可为该类结构的设计和工程应用提供参考。
二、风机原型
NREL 5MW由美国可再生能源实验室开发,是一款传统的3叶片水平轴上风型风机模型,它通常作为陆上和海上风机研究的基准风机。风机结构如图4所示。
图4 NREL 5MW OC3 Monopile风机多灾耦合模型
采用美国可再生能源实验室(NREL)开发的风机分析软件OpenFAST (Fatigue, Aerodynamics, Structures, Turbulence, FAST)对考虑风、浪、流及RNA运行的NREL 5MW风电塔进行多工况耦合仿真。如图5所示,OpenFAST将气动、水动、结构、伺服控制分为独立的计算模块,并通过模块间的数据传导及计算实现耦合分析。采用指数律风剖面的平均风模型以考虑风切变对风轮气动荷载的影响。
图5 OpenFAST计算模块
图6 风场及叶素翼型
三、有限元分析
采用ABAQUS对地震荷载作用下的钢结构风电塔体系和圆锥形中空夹层钢管混凝土风电塔体系进行数值模拟。
图7 固定式基础x方向地震波加载风电塔模型
以NREL 5.0 MW风机为研究对象,选取1935年 Carroll 地震作为输入激励,计算了停机状态下风力机结构动力学响应。图8为ABAQUS、GH Bladed和NREL Seismic三种软件计算的风力机塔架横向(side-side)动力学响应。
图8 停机工况下塔架横向动力学响应时域对比
图9 两类风电塔前两阶模态
从图10可以发现仅考虑地震作用的工况下,塔顶位移随地震波峰值加速度增大而增大,且与地震动类型有关。CFDST塔的塔顶位移相较于传统钢结构塔最大减小38.09%,平均减小25.1%,通过上述分析可以发现,底部固接时,约束作用较为明显,CFDST塔和传统钢塔的塔顶位移响应较小,CFDST塔的刚度优势未被充分发挥。
图10 仅地震作用塔顶动态响应对比
图11 地震入射角示意图
图12 地震入射角对风电塔峰值响应的影响
用Bmodes对两类风电塔的前两阶前后和两侧的振型进行计算,CFDST组合塔需要修改Bmodes软件中的CS_monopile_tower_secs.dat文件,重新定义组合线性密度(mass_densc)、组合惯性矩(flp_inersc, edge_inersc)、组合抗弯刚度(flp_stffsc, edge_stffsc)、组合扭转刚度(tor_stffsc)、组合轴向刚度等参数(axial_stffsc),计算方法详见公式(1)-(5):
通过图15可以发现,在风浪耦合作用下运行工况下的CFDST塔顶位移相较于传统钢结构风电塔有明显的减小,前后向最大位移减小了42.3%,侧向最大位移减小了61.3%,可以看出考虑风浪耦合作用且考虑柔性边界条件时,可以充分发挥CFDST塔的刚度优势。通过上述分析可以发现CFDST海上单桩风电塔在承受风浪荷载的正常运行工况下,其稳定性相较于传统钢结构风电塔有较大提升。
图13 运行工况下turbsim风场图
图14 Bmodes前两阶模态分析
图15运行工况下塔顶位移对比
图16 波浪荷载对塔顶位移的影响
图18可以看出在风-浪-震作用下,CFDST塔的塔顶加速度峰值小于钢结构塔,且后续衰减更快,这是因为在风-浪-震耦合作用下,阻尼对加速度响应的影响更大,而CFDST塔的阻尼更大,所以加速度响应更小,且衰减更快。可以发现风-浪-震耦合作用下CFDST塔顶的加速度响应最大减小了26.6%,平均减小了20.8%,塔顶位移响应最大减小了46.1%,平均减小了37.6%。可以看出在极端工况作用下,CFDST组合风电塔因其刚度和阻尼更大,塔顶加速度响应和位移响应都有明显降低。
图17 两类风电塔风-浪-震耦合模型
图18 风电塔风-浪-震耦合动态响应分析
四、结论
Conclusions
1
底部固接且仅考虑地震荷载,低加速度峰值作用下塔顶加速度响应与塔筒质量相关性较大,当峰值加速度大于400Gal时,塔顶加速度响应与刚度相关性较大。
2
相较于传统钢塔,地震入射角对CFDST塔的影响更为明显,在设计中考虑地震动方向效应对风机的结构安全至关重要。
3
两类单桩式风电塔在风浪荷载耦合作用下, CFDST塔顶位移有明显的减小。风荷载和RNA作用对两类风电塔的动态响应有较大影响,波浪荷载对风电塔的动态响应影响有限。
4
在考虑风-浪-震耦合作用下,CFDST塔的刚度优势充分发挥,塔顶加速度相较于传统钢塔不仅在峰值有20%左右的下降且塔顶位移峰值减小在50%以上。
五、相关文献
[1]Hong Zheng-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.
[2]Shi Yan-Li, Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Fan Jia-Hao. Axial compressive behaviour of tapered CFDST stub columns with large void ratio. Journal of Constructional Steel Research, 2022, 191: 107206.
[3]Fan Jia-Hao, Wang Wen-Da*, Shi Yan-Li, Ji Sun-Hang. Torsional behaviour of tapered CFDST members with large void ratio. Journal of Building Engineering, 2022, 52: 104434.
[4]Duan Li-Xin, Wang Wen-Da*, Xian Wei, Shi Yan-Li. Shear response of circular-in-square CFDST members: Experimental investigation and finite element analysis. Journal of Constructional Steel Research, 2022, 190: 107160.
[5]史艳莉, 纪孙航, 王文达, 张宸, 范家浩. 大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究. 土木工程学报, 2022, 55(1): 75-88.
[6]史艳莉,张超峰,鲜威,王文达.圆锥形中空夹层钢管混凝土偏压构件受力性能研究. 建筑结构学报,2021,42(5): 155-164+176.
[7]Wang Wen-Da*, Fan Jia-Hao, Shi Yan-Li, Xian Wei. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending. Journal of Constructional Steel Research, 2021, 182: 106689.
作者简介
段力歆:男,甘肃人,博士研究生。主要从事钢-混组合风电塔体系抗震性能研究。
2019.09-2022.06,兰州理工大学土木工程学院结构工程专业,硕士研究生(导师:王文达教授、史艳莉教授)
郑龙:男,辽宁人,讲师。主要从事钢与混凝土组合结构、装配式结构的抗震、抗连续倒塌及抗冲击性能研究。2023年甘肃省优秀博士毕业论文获得者。
2016.09-2019.06,兰州理工大学 土木工程学院 结构工程专业,硕士研究生(导师:王文达教授、史艳莉教授)
相关研究
(可点击进入)
Part.1
组合结构连续性倒塌
1.组合结构连续性倒塌:次边柱失效下钢管混凝土组合框架抗连续性倒塌性能
2.组合结构连续性倒塌:钢管混凝土柱-组合梁节点抗连续性倒塌性能
3.组合结构连续性倒塌:简化多尺度模型在组合框架连续倒塌研究中的应用
4.组合结构连续性倒塌:装配式钢管混凝土柱-组合梁节点抗连续性倒塌性能
5.组合结构抗连续倒塌:钢管混凝土组合框架-装配式拉伸钢支撑结构抗连续倒塌性能研究
6.组合结构抗连续倒塌:全填充墙钢管混凝土组合框架抗连续倒塌性能研究
7.组合结构抗连续倒塌:冲击荷载下钢管混凝土柱-组合梁节点的抗连续倒塌性能研究
8.组合结构抗连续倒塌:钢管混凝土框架-RC剪力墙结构抗连续倒塌试验研究
Part.2
组合结构全寿命周期性能
1.组合结构全寿命周期性能:钢管初应力对内配型钢圆钢管混凝土受压构件力学性能影响
2.组合结构全寿命周期性能:施工初应力对内配型钢圆钢管混凝土压弯构件力学性能影响
3.组合结构全寿命周期性能:方套圆中空夹层钢管混凝土构件剪切性能
4.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——短柱轴压性能
5.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——偏压性能
6.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——纯弯性能
7.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压弯构件滞回性能
8.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压扭性能
9.组合结构全寿命周期性能:长期荷载作用下内配型钢方钢管混凝土力学性能研究
11.组合结构全寿命周期性能:内配型钢钢管混凝土压弯构件在单调及往复荷载下的受力性能
Part.3
混合结构抗震性能
1.混合结构抗震性能:钢管混凝土伸臂桁架-核心筒体剪力墙空间节点抗震性能试验研究
Part.4
组合结构撞击性能
2.组合结构撞击性能:火灾后内配型钢钢管混凝土柱侧向撞击和撞后性能研究
3.组合结构撞击性能:火灾后钢管混凝土构件侧向撞击性能试验和数值研究
4.组合结构撞击性能:火灾后内配型钢钢管混凝土构件侧向撞击性能试验研究Part.5
组合结构抗火性能
2.组合结构抗火性能:带防火保护层的内配型钢钢管混凝土柱耐火性能分析
Part.6
装配式钢筋混凝土结构
Part.7
新型高性能结构材料
Part.8
新型吸能结构
课题组主要成果
Part.1
组合结构连续性倒塌
[1]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse mechanism and reinforcement methods of composite frame with CFST columns and infill walls. Journal of Constructional Steel Research, 2023, 208: 108022.
[2]. Wang Wen-Da*, Zheng Long*, Xian Wei. Simplified multi-scale simulation investigation of 3D composite floor substructures under different column-removal scenarios. Journal of Constructional Steel Research, 2023,208: 108002.
[3]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse performance of concrete-filled steel tubular composite frame with RC shear walls under middle column removal. Journal of Building Engineering, 2023, 64: 105611.
[4]. Wang Wen-Da*, Zheng Long, Xian Wei. Performance of the CFST column to composite beam connection under static and impact loads. Journal of Constructional Steel Research, 2022,198: 107567.
[5]. 王景玄*,杨永,孙衍浩. 全填充墙钢管混凝土组合框架抗连续倒塌性能研究[J]. 土木工程学报,2022,55(8): 11-13.
[6]. Wang Jing-Xuan, Shen Ya-Jun, Gao Shan*, Wang Wen-Da. Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal. Engineering Structures, 2022, 266: 114635.
[7].Zheng Long, Wang Wen-Da*, Xian Wei. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connection with CFST column and composite beam. Engineering Structures, 2022, 256: 114061.
[8].Zheng Long, Wang Wen-Da*. Multi-scale numerical simulation analysis of CFST column-composite beam frame under a column-loss scenario. Journal of Constructional Steel Research, 2022, 190: 107151.
[9].Zheng Long, Wang Wen-Da*, Li Hua-Wei. Progressive collapse resistance of composite frame with concrete-filled steel tubular column under a penultimate column removal scenario. Journal of Constructional Steel Research, 2022, 189: 107085.
[10].王景玄*,杨永,周侃,李秋颖. 角柱失效下钢管混土柱-组合梁框架抗连续倒塌能力研究. 工程力学,2022,39(5):105-118.
[11].Wang Jiang-Xuan*, Yang Yong, Xian Wei, Li Qiu-Ying. Progressive collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted-welded hybrid connection. International Journal of Steel Structures, 2020, 20(5), 1618-1635.
[12].Wang Wen-Da*, Zheng Long, Li Hua-Wei. Experimental investigation of composite joints with concrete-filled steel tubular column under column removal scenario. Engineering Structures, 2020, 219: 110956.
[13].郑龙,王文达*,李华伟,李天昊.钢管混凝土柱-钢梁穿心螺栓外伸端板式节点抗连续倒塌性能研究.建筑结构学报,2019,40(11): 140-149
[14].Shi Yan-Li, Zheng Long, Wang Wen-Da*. The influence of key component characteristic on the resistance to progressive collapse of composite joint with the concrete-filled steel tubular column and steel beam with through bolt-extended endplate. Frontiers in Materials, 2019, 6: 64.
[15].王文达*,郑龙,魏国强.穿心构造的钢管混凝土柱-钢梁节点抗连续性倒塌性能分析与评估.工程科学与技术,2018,50(6): 39-47.
[16].王景玄,王文达*,李华伟.钢管混凝土平面框架子结构抗连续倒塌精细有限元分析.工程力学,2018,35(6): 105-114.
[17].王景玄,王文达*,李华伟.采用静-动力转换方法的钢管混凝土框架受火倒塌非线性分析.工程科学与技术,2017,49(4): 53-60.
[18].Wang Wen-Da*, Li Hua-Wei, Wang Jing-Xuan. Progressive collapse analysis of concrete-filled steel tubular column to steel beam connections using multi-scale model. Structures, 2017, 9: 123-133.
[19].史艳莉,石晓飞,王文达*,王景玄,李华伟.圆钢管混凝土柱-H钢梁内隔板式节点抗连续倒塌机理研究.振动与冲击,2016,35(19):148-155.
[20].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.
Part.2
组合结构撞击性能
[1].纪孙航,王文达*,赵晖,王蕊,史艳莉.受火后内配型钢方钢管混凝土构件抗侧向撞击性能试验研究.建筑结构学报,2024,45(3):148-159.
[2].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Shi Yan-Li*, Xian Wei. Lateral impact behaviour of post-fire steel-reinforced concrete-filled steel tubular members: Experiment and evaluation method. Engineering Structures, 2023, 293: 116612.
[3].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Xian Wei, Wang Rui, Shi Yan-Li*. Experimental and numerical investigation on the lateral impact responses of CFST members after exposure to fire. Thin-Walled Structures, 2023, 190: 110968.
[9].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*. Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular (SRCFST) members subjected to lateral impact. Thin-Walled Structures, 2021, 160: 107409.
[10].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*, Wang Rui. Investigation on the lateral impact responses of circular concrete-filled double-tube (CFDT) members. Composite Structures, 2021, 255: 112993.
[11].Xian Wei, Wang Wen-Da*, Wang Rui, Chen Wen-Su, Hao Hong. Dynamic response of steel-reinforced concrete-filled circular steel tubular members under lateral impact loads. Thin-Walled Structures, 2020, 151: 106736.
[12].史艳莉,纪孙航,王文达*,郑龙.高温作用下钢管混凝土构件侧向撞击性能研究.爆炸与冲击,2020,40(4): 043303.
[13].史艳莉,鲜威,王蕊,王文达*.方套圆中空夹层钢管混凝土组合构件横向撞击试验研究.土木工程学报,2019,52(12): 11-21.
[14].史艳莉,何佳星,王文达*,鲜威,王蕊.内配圆钢管的圆钢管混凝土构件耐撞性能分析.振动与冲击,2019,38(9): 123-132.
Part.3
组合结构抗火
[1].Wang Wen-Da*, Mao Wen-Jing, Zhou Kan. Experimental investigation on residual capacity of steel-reinforced concrete-filled thin-walled steel tubular columns subjected to combined loading and temperature. Thin-Walled Structures, 2024, 197: 111557.
[2].Mao Wen-Jing, Zhou Kan, Wang Wen-Da*. Investigation on fire resistance of steel-reinforced concrete-filled stell tubular columns subjected to non-unform fire. Engineering structures, 2023, 280: 115653.
[3].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan. Fire performance on steel-reinforced concrete-filled steel tubular columns with fire protection. Journal of Constructional Steel Research, 2022, 199: 107580.
[4].魏国强,王文达*,毛文婧.震损后方钢管混凝土柱耐火性能试验研究.建筑结构学报,2022,43(12):123-134.
[5].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan, Du Er-Feng. Experimental study on steel-reinforced concrete-filled steel tubular columns under the fire. Journal of Constructional Steel Research, 2021, 185: 106867.
[6].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85,DOI: 10.6052/j.issn.1000-4750.2020.05.0259
[7].Mao Wen-Jing, Wang Wen-Da*, Xian Wei. Numerical analysis on fire performance of steel-reinforced concrete-filled steel tubular columns with square cross-section. Structures, 2020, 28: 1-16.
[8].Xu Lei*, Wang Ming-Tao, Bao Yan-Hong, Wang Wen-Da. Numerical analysis on structural behaviors of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to 3-side fire. International Journal of Steel Structures, 2017, 17(4): 1515-1528.
[9].Bao Yan-Hong, Xu Lei*, Wang Wen-Da, Sun Jian-Gang. Numerical analysis on mechanical property of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to ISO-834 standard fire. International Journal of Steel Structures, 2017, 17(4): 1561-1581.
[10].王景玄,王文达*.考虑火灾全过程的钢管混凝土柱-组合梁平面框架受力性能分析.振动与冲击,2014, 33(11): 124-129+135.
[11].王景玄,王文达*.不同火灾工况下钢梁-钢管混凝土柱平面框架受火全过程分析.建筑结构学报,2014,35(3): 102-109.
Part.4
组合结构抗震
[1].Rui Jia, Xian Wei, Wang Wen-Da*, Zhu Yan-Peng, Wang Jing-Xuan. Experimental study on seismic behaviour of the outrigger truss-core wall spatial joints with peripheral CFST columns. Structures, 2022, 41: 1014-1026.
[2].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.
[3].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85.
[4].王凤,王文达*,史艳莉.钢管混凝土框架柱计算长度研究.工程力学,2015,32(1): 168-175.
[5].王文达*,魏国强,李华伟.钢管混凝土框架-RC剪力墙混合结构滞回性能分析.振动与冲击,2013, 32(15): 45-50.
[6].王文达*,史艳莉,文天鹏.钢框架平端板连接组合节点弯矩-转角关系.振动与冲击,2013,32(10):43-49+68.
[7].史艳莉,王文达,靳垚.考虑墙体作用的低层冷弯薄壁型钢轻型房屋住宅体系弹塑性动力分析.工程力学,2012,29(12): 186-195.
[8].Han Lin-Hai, Wang Wen-Da, Tao Zhong. Performance of circular CFST column-to-steel beam frames under lateral cyclic loading. Journal of Constructional Steel Research, 2011, 67(5): 876-890.
[9].曲慧,王文达.钢管混凝土梁柱连接节点弯矩-转角关系实用计算方法研究.工程力学,2010,27(5): 106-114.
[10].王文达,韩林海.钢管混凝土柱-钢梁平面框架的滞回关系.清华大学学报(自然科学版),2009,49(12): 1934-1938.
[11].王文达,韩林海.钢管混凝土框架力学性能的简化二阶弹塑性分析.清华大学学报(自然科学版),2009,49(9): 1455-1458.
[12].Wang Wen-Da, Han Lin-Hai, Zhao Xiao-Ling. Analytical behavior of frames with steel beam to concrete-filled steel tubular column. Journal of Constructional Steel Research, 2009, 65(3): 497-508.
[13].王文达,韩林海.钢管混凝土框架力学性能的非线性有限元分析.建筑结构学报,2008,29(6): 75-83.
[14].王文达,韩林海.钢管混凝土框架实用荷载-位移恢复力模型研究.工程力学,2008,25(11): 62-69.
[15].Wang Wen-Da, Han Lin-Hai, Uy Brian. Experimental behaviour of steel reduced beam section (RBS) to concrete- filled CHS column connections. Journal of Constructional Steel Research, 2008, 64(5): 493-504.
[16].Han Lin-Hai, Wang Wen-Da, Zhao Xiao-Ling. Behaviour of steel beam to concrete-filled SHS column frames: Finite element model and verifications. Engineering Structures, 2008, 30(6): 1647-1658.
[17].王文达,韩林海,游经团.方钢管混凝土柱-钢梁外加强环节点滞回性能的实验研究,土木工程学报,2006,39(9):17-25.
[18].王文达,韩林海,陶忠.钢管混凝土柱-钢梁平面框架抗震性能的试验研究.建筑结构学报,2006,27(3):48-58.
Part.5
组合结构全寿命周期性能
[1].Wu Xiao-Ming, Shi Yan-Li*, Zheng Long, Wang Wen-Da*. Performance of rectangular SRCFST stub columns under long-term loading and preload on steel tube. Structures, 2024, 61: 106110.
[2].王文达,陈亚明,纪孙航,史艳莉.双钢管混凝土构件滞回性能试验与分析[J].建筑结构学报,2023,45(1):128-138.
[3].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.
[4].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Zheng Long. Numerical studies on creep behaviour of SRCFST columns with initial stress of steel tube. Journal of Constructional Steel Research, 2023, 201: 108214.
[5].Wang Wen-Da*, Jia Zhi-Lu, Xian Wei, Shi Yan-Li. Performance of SRCFST member under long-term loading and preload on steel tube. Journal of Building Engineering, 2023, 73: 106700.
[6].Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Shi Yan-Li*. Cyclic and monotonic behaviour of steel-reinforced concrete-filled steel tubular columns. Thin-Walled Structures, 2023, 185: 110644.
[7].Wang Wen-Da*, Ji Sun-Hang, Shi Yan-Li. Experimental and numerical investigations on concrete-filled double-tubular slender columns under axial and eccentric loading. Journal of Constructional Steel Research, 2023, 201: 107714.
[8].Jia Zhi-Lu, Wang Wen-Da*, Shi Yan-Li, Xian Wei. Performance of steel-reinforced concrete-filled square steel tubular members under sustained axial compression loading. Engineering Structures, 2022, 263: 114464.
[9].贾志路,史艳莉,王文达*,鲜威.钢管初应力对内配型钢的圆钢管混凝土柱受压性能影响.建筑结构学报,2022,43(6): 63-74.
[10].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Xian Wei. Compression-bending behaviour of steel-reinforced concrete-filled circular steel tubular columns with preload. Structures, 2022, 36: 892-911.
[11].Jia Zhi-Lu, Shi Yan-Li, Xian Wei, Wang Wen-Da*. Torsional behaviour of concrete-filled circular steel tubular members under coupled compression and torsion. Structures. 2021, 34: 931-946.
[12].王文达*,纪孙航,史艳莉,张宸.内配型钢方钢管混凝土构件压弯剪性能研究.土木工程学报,2021,54(1): 76-87.
[13].Shi Yan-Li, Jia Zhi-Lu, Wang Wen-Da*, Xian Wei, Tan Ee Loon. Experimental and numerical study on torsional behaviour of steel-reinforced concrete-filled square steel tubular members. Structures, 2021, 32: 713-730.
[14].Wang Wen-Da*, Ji Sun-Hang, Xian Wei, Shi Yan-Li. Experimental and numerical investigations of steel-reinforced concrete-filled steel tubular members under compression-bending-shear loads. Journal of Constructional Steel Research, 2021, 181: 106609.
[15].Wang Wen-Da*, Xian Wei, Hou Chao, Shi Yan-Li. Experimental investigation and FE modelling of the flexural performance of square and rectangular SRCFST members. Structures, 2020, 27: 2411-2425.
[16].Wang Wen-Da*, Jia Zhi-Lu, Shi Yan-Li, Tan Ee Loon. Performance of steel-reinforced circular concrete-filled steel tubular members under combined compression and torsion. Journal of Constructional Steel Research, 2020, 173: 106271.
[17].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Mechanical behaviour of circular steel-reinforced concrete-filled steel tubular members under pure bending loads. Structures, 2020, 25: 8-23.
[18].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Experimental performance of circular concrete-filled steel tubular members with inner profiled steel under lateral shear load. Engineering Structures, 2019, 201: 109746.
[19].史艳莉*,周绪红,鲜威,王文达.无端板矩形钢管混凝土构件基本剪切性能研究.工程力学,2018,35(12): 25-33.
[20].王文达,于清.混凝土浇筑过程中方钢管柱的力学性能.清华大学学报(自然科学版),2013,53(1):6-11.
Part.6
中空夹层钢管混凝土结构
[1].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.
[2].Fan Jia-Hao, Wang Wen-Da*, Shi Yan-Li, Ji Sun-Hang. Torsional behaviour of tapered CFDST members with large void ratio. Journal of Building Engineering, 2022, 52: 104434.
[3].Shi Yan-Li, Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Fan Jia-Hao. Axial compressive behaviour of tapered CFDST stub columns with large void ratio. Journal of Constructional Steel Research, 2022, 191: 107206.
[4].Duan Li-Xin, Wang Wen-Da*, Xian Wei, Shi Yan-Li. Shear response of circular-in-square CFDST members: Experimental investigation and finite element analysis. Journal of Constructional Steel Research, 2022, 190: 107160.
[5].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.
[6].Wang Wen-Da*, Fan Jia-Hao, Shi Yan-Li, Xian Wei. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending. Journal of Constructional Steel Research, 2021, 182: 106689.
[7].史艳莉,张超峰,鲜威,王文达*.圆锥形中空夹层钢管混凝土偏压构件受力性能研究.建筑结构学报,2021,42(5): 155-164+176.
Part.7
纤维模型与子程序开发等
[1].Tao Zhong*, Katwal Utsab, Uy Brian, Wang Wen-Da. Simplified nonlinear simulation of rectangular concrete-filled steel tubular columns. ASCE Journal of Structural Engineering, 2021, 147(6): 04021061.
[2].Shi Yan-Li*, Li Hua-Wei, Wang Wen-Da, Hou Chao. A fiber model based on secondary development of ABAQUS for elastic-plastic analysis. International Journal of Steel Structures, 2018, 18(5): 1560-1576.
[3].Katwal Utsab, Tao Zhong*, Hassan Md Kamrul, Wang Wen-Da. Simplified numerical modeling of axially loaded circular concrete-filled steel stub columns. ASCE Journal of Structural Engineering, 2017, 143(12): 04017169.
[4].王文达*,魏国强.基于纤维模型的型钢混凝土组合剪力墙滞回性能分析.振动与冲击,2015,35(6):30-35.
[5].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.
[6].王文达*,杨全全,李华伟.基于分层壳单元与纤维梁单元组合剪力墙滞回性能分析.振动与冲击,2014, 33(16):142-149.
[7].李华伟,王文达*.ABAQUS二次开发在钢管混凝土结构有限元分析中的应用.建筑结构学报,2013,34(s1):353-358.
Part.8
装配式钢筋混凝土结构
[1].Yuan Yu-Jie, Wang Wen-Da*, Huang Hua. Deformation mechanism of steel artificial controllable plastic hinge in prefabricate frame. Journal of Constructional Steel Reserarch, 2023, 201: 107735.
Part.9
新型高性能结构材料
[1].Gao Fang-Fang, Tian Wei, Wang Wen-Da*. Residual impact resistance behavior of concrete containing carbon nanotubes after exposure to high temperatures. Construction and Building Materials, 2023, 366: 130183.
Part.10
新型吸能结构
[1].Zheng Long, Li Fu-Qi, Wang Wen-Da*, Shi Yan-Li*. Bionic corrugated sandwich cylindrical tubes subjected to transverse impact. Structures, 2024, 64: 106599.
[2].Zheng Long, Li Fu-Qi, Wang Wen-Da*. A honeycomb panel-based protective device for steel parking structure against transverse impact. Journal of Constructional Steel Research, 2023, 211: 108203.
Part.11
风电工程结构
[1].Duan Li-Xin, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Dynamic response analysis of monopile CFDST wind turbine tower system under wind-wave-seismic coupling action. Thin-Walled Structures, 2024, 202: 112089.
编辑:郑 龙
审核:王文达
✦+
+
王文达课题组
微信号|wangwd_group
兰州理工大学土木工程学院王文达课题组
点击蓝字 阅读原文
+