引用格式:
Wang WD, Zheng L, Xian W. Simplified multi-scale simulation investigation of 3D composite floor substructures under different column-removal scenarios. Journal of Constructional Steel Research, 208 (2023) 108002.
Highlights:
1. A progressive collapse study on 3D composite
floor substructures is carried out.
2. Fixed, hinged beam ends overestimate CA, and disregarding boundary constraints overestimate deformation performance.
3. CVD severely underestimates the robustness of 3D substructures than UDL.
4. Floor number, RC floor, shear wall, and steel brace significantly influence the progressive collapse performance.
论文信息:
论文链接:https://www.sciencedirect.com/science/article/abs/pii/S0143974X23002298
论文50天免费下载链接(至2023年7月6日):
https://authors.elsevier.com/c/1h5Xu,3HWfIAAw
DOI: 10.1016/j.jcsr.2023.108002
一、研究背景
自世贸大厦遭受飞机撞击发生连续性倒塌以来,直至今日建筑结构倒塌事故仍频繁发生,如2021年佛罗里达州12层公寓倒塌和2021年苏州酒店大楼倒塌等(图1),均造成了严重人员伤亡和经济损失。建筑结构抗连续倒塌性能是备受专家学者关注的议题之一。目前普遍采用DoD建议的备用荷载路径法对结构的抗连续倒塌性能进行结构分析。近年来,由于试验场地的改进,一些缩尺空间框架的倒塌试验研究得以实现。但空间框架的抗连续倒塌性能是较复杂的,许多问题不易在试验中得到充分验证。
二、空间框架简化多尺度建模方法
以某3层公共建筑为原型结构(主体结构为钢管混凝土柱-钢梁-RC楼板框架),选取底层2×1跨空间子结构作为本文的研究对象,分别考虑其在角柱失效、次角柱失效、边柱失效工况下的抗连续倒塌性能。
如图3所示,采用简化多尺度建模方法建立空间框架模型。模型中,梁-柱节点区域组件采用C3D8R实体单元建模,其中非精细区和精细区的网格尺寸分别为40 mm和20 mm。而非梁-柱节点区域的梁和柱采用B31梁单元建模,其网格尺寸为100 mm。RC楼板采取S4R壳单元,双层钢筋网采用“rebar layer”功能实现。此外,对梁端支座的边界条件进行简化,在梁端建立运动耦合点,并在耦合点水平方向外100 mm处建立固定参考点,采用线性连接单元“Axial+Align”将两点相连,水平约束弹簧的刚度由该方向钢管混凝土柱的总抗侧刚度决定,最终实现对梁端支座的水平边界约束条件的简化。
三、空间框架的抗连续倒塌性能对比
图4和5分别给出了三种工况下空间框架的楼板破坏模式和钢构件破坏模式。可见,柱失效工况下均布荷载作用的失效跨楼板产生拉膜效应,楼板延斜对角方向形成正塑性铰线,沿负弯矩区钢梁方向形成负塑性铰线。角柱失效工况下长跨梁和短跨梁的负弯矩区上翼缘焊缝均发生断裂,且剪切板分别出现局部屈曲和拉剪断裂。次角柱失效和边柱失效工况下短跨梁的负弯矩区上翼缘焊缝和剪切板发生断裂,而单侧长跨梁的负弯矩区上翼缘焊缝和正弯矩区下翼缘焊缝均发生受拉断裂,且剪切板螺栓孔出现挤出破坏。
图6给出了不同工况下空间框架的均布荷载-竖向位移曲线对比。不难发现,角柱失效工况的初始刚度和峰值均布荷载较次角柱失效和边柱失效工况降低10~20%。由于边跨约束的增强,边柱失效工况的初始刚度较次角柱失效工况提升了5.1%,但强约束造成了节点的过早断裂,使前者的峰值均布荷载较后者降低了6.6%。
基于如图7所示的计算简图,可获得与失效柱相连的梁的抗弯机制和悬链线机制贡献的竖向抗力。可发现,空间框架主要依靠抗弯机制、悬链线机制和楼板机制抵抗连续倒塌。加载初始,空间框架主要依靠抗弯机制和楼板机制抵抗均布荷载,占比约为75%和25%。随着竖向位移的增大,悬链机制提供的抗力持续增大,当达到峰值均布荷载时,抗弯机制、悬链线机制、楼板机制贡献的竖向抗力分别达到46.2~61.0%、14.2~23.7%、23.6~30.3%。
四、不同参数的影响
1.边界约束的影响
对比和分析四种边界约束,包括:考虑真实边界约束(前文给出的简化方法)、梁端完全固定、梁端铰接以及无边界约束。图8展示了部分计算结果,结论如下:梁端完全固定和铰接的边界条件将高估悬链线效应所贡献的竖向抗力,而无边界约束将低估空间框架的曲线初始刚度和竖向承载力并高估其变形能力。
2.加载方式的影响
对于空间框架的抗连续倒塌研究,大多数研究均采用楼板均布荷载进行加载,但也有部分研究的加载方式为仅在失效柱的柱顶施加竖向荷载。图9和10分别给出两种加载方式下总竖向反力-竖向位移曲线和柱顶集中荷载下楼板的破坏模式。综合来看,两种加载方式下空间框架的荷载-位移曲线和整体变形呈现明显差异。由于荷载很难传递至楼板以及周边完好的梁和柱,采用失效柱竖向荷载的加载方式严重低估了空间框架的抗连续倒塌能力。
3.层数的影响
如图10所示,层数的增加提升了曲线初始刚度,但对加载后期的承载力和变形能力影响不大。此外,多层空间框架在角柱失效工况和次角柱失效(边柱失效)工况下分别呈现“悬臂深梁效应”和“简支深梁效应”。
4.楼板的影响
如图11所示,不考虑楼板的空间框架在三种工况下的曲线初始刚度和竖向反力峰值分别降低18.9~35.2%和26.8~36.7%。
5.剪力墙和支撑的影响
实际结构中往往存在剪力墙和钢支撑等构件,为探究其影响,分别建立考虑钢板剪力墙和X型钢支撑的空间框架模型,如图12所示。图13展示了钢板剪力墙和X型钢支撑对均布荷载-竖向位移曲线的影响。不难看出,钢板剪力墙和X型钢支撑对空间框架的初始刚度和承载力均有提升,其中X型钢支撑对初始刚度的提升效果更明显,但二者对空间框架在连续倒塌工况下的变形能力有所削弱。
五、结论
Conclusions
1
角柱失效工况的初始刚度和峰值均布荷载较次角柱失效和边柱失效工况降低10~20%。由于边跨约束的增强,边柱失效工况的初始刚度较次角柱失效工况提升了5.1%,但强约束造成了节点的过早断裂,使前者的峰值均布荷载较后者降低了6.6%。
2
加载初始,空间框架主要依靠抗弯机制和楼板机制抵抗均布荷载,占比约为75%和25%。当达到峰值均布荷载时,抗弯机制、悬链线机制、楼板机制贡献的竖向抗力分别达到46.2~61.0%、14.2~23.7%、23.6~30.3%。
3
梁端完全固定和铰接的边界条件将高估悬链线效应所贡献的竖向抗力,而无边界约束将低估曲线初始刚度和竖向承载力。由于荷载很难传递至楼板以及周边完好的梁和柱,采用失效柱竖向荷载的加载方式严重低估了空间框架的抗连续倒塌能力。层数的增加提升了曲线初始刚度。
4
不考虑楼板时曲线初始刚度和竖向抗力峰值分别降低18.9~35.2%和26.8~36.7%。钢板剪力墙和X型钢支撑对初始刚度和承载力均有提升,但二者对空间框架的变形能力有所削弱。
六、相关文献
[1]Wang Jing-Xuan, Sun Yan-Hao, Gao Shan,Wang Wen-Da*. Anti-collapse performance of concrete-filled steel tubular composite frame with RC shear walls under middle column removal. Journal of Building Engineering, 2023, 64: 105611.
[2]Zheng Long, Wang Wen-Da*, Xian Wei. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connection with CFST column and composite beam. Engineering Structures, 2022, 256: 114061.
郑龙:男,辽宁人,博士。主要从事钢-混组合结构抗连续倒塌及抗冲击性能研究。
2016.09-2019.06,兰州理工大学结构工程专业,硕士研究生(导师:王文达教授、史艳莉教授)
2019.09-2022.12,兰州理工大学结构工程专业,博士研究生(导师:王文达教授、史艳莉教授)
2023.01-至今,兰州理工大学,土木工程学院,讲师
作者简介
相关研究
Part.1
组合结构连续性倒塌
1.组合结构连续性倒塌:次边柱失效下钢管混凝土组合框架抗连续性倒塌性能
2.组合结构连续性倒塌:钢管混凝土柱-组合梁节点抗连续性倒塌性能
3.组合结构连续性倒塌:简化多尺度模型在组合框架连续倒塌研究中的应用
4.组合结构连续性倒塌:装配式钢管混凝土柱-组合梁节点抗连续性倒塌性能
5.组合结构抗连续倒塌:钢管混凝土组合框架-装配式拉伸钢支撑结构抗连续倒塌性能研究
6.组合结构抗连续倒塌:全填充墙钢管混凝土组合框架抗连续倒塌性能研究
Part.2
组合结构全寿命周期性能
1.组合结构全寿命周期性能:钢管初应力对内配型钢圆钢管混凝土受压构件力学性能影响
2.组合结构全寿命周期性能:施工初应力对内配型钢圆钢管混凝土压弯构件力学性能影响
3.组合结构全寿命周期性能:方套圆中空夹层钢管混凝土构件剪切性能
4.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——短柱轴压性能
5.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——偏压性能
6.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——纯弯性能
7.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压弯构件滞回性能
8.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压扭性能
9.组合结构全寿命周期性能:长期荷载作用下内配型钢方钢管混凝土力学性能研究
11.组合结构全寿命周期性能:内配型钢钢管混凝土压弯构件在单调及往复荷载下的受力性能
Part.3
混合结构抗震性能
Part.4
组合结构撞击性能
Part.5
组合结构抗火性能
Part.6
装配式钢筋混凝土结构
Part.7
新型高性能结构材料
课题组主要成果
Part.1
组合结构连续性倒塌
[1]. Wang Wen-Da*, Zheng Long*, Xian Wei. Simplified multi-scale simulation investigation of 3D composite floor substructures under different column-removal scenarios. Journal of Constructional Steel Research, 2023,208: 108002.
[2]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. AAnti-collapse performance of concrete-filled steel tubular composite frame with RC shear walls under middle column removal. Journal of Building Engineering, 2023, 64: 105611.
[3]. Wang Wen-Da*, Zheng Long, Xian Wei. Performance of the CFST column to composite beam connection under static and impact loads. Journal of Constructional Steel Research, 2022,198: 107567.
[4]. 王景玄*,杨永,孙衍浩. 全填充墙钢管混凝土组合框架抗连续倒塌性能研究[J]. 土木工程学报,2022,55(8): 11-13.
[5]. Wang Jing-Xuan, Shen Ya-Jun, Gao Shan*, Wang Wen-Da. Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal. Engineering Structures, 2022, 266: 114635.
[6].Zheng Long, Wang Wen-Da*, Xian Wei. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connection with CFST column and composite beam. Engineering Structures, 2022, 256: 114061.
[7].Zheng Long, Wang Wen-Da*. Multi-scale numerical simulation analysis of CFST column-composite beam frame under a column-loss scenario. Journal of Constructional Steel Research, 2022, 190: 107151.
[8].Zheng Long, Wang Wen-Da*, Li Hua-Wei. Progressive collapse resistance of composite frame with concrete-filled steel tubular column under a penultimate column removal scenario. Journal of Constructional Steel Research, 2022, 189: 107085.
[9].王景玄*,杨永,周侃,李秋颖. 角柱失效下钢管混土柱-组合梁框架抗连续倒塌能力研究. 工程力学,2022,39(5):105-118.
[10].Wang Jiang-Xuan*, Yang Yong, Xian Wei, Li Qiu-Ying. Progressive collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted-welded hybrid connection. International Journal of Steel Structures, 2020, 20(5), 1618-1635.
[11].Wang Wen-Da*, Zheng Long, Li Hua-Wei. Experimental investigation of composite joints with concrete-filled steel tubular column under column removal scenario. Engineering Structures, 2020, 219: 110956.
[12].郑龙,王文达*,李华伟,李天昊.钢管混凝土柱-钢梁穿心螺栓外伸端板式节点抗连续倒塌性能研究.建筑结构学报,2019,40(11): 140-149
[13].Shi Yan-Li, Zheng Long, Wang Wen-Da*. The influence of key component characteristic on the resistance to progressive collapse of composite joint with the concrete-filled steel tubular column and steel beam with through bolt-extended endplate. Frontiers in Materials, 2019, 6: 64.
[14].王文达*,郑龙,魏国强.穿心构造的钢管混凝土柱-钢梁节点抗连续性倒塌性能分析与评估.工程科学与技术,2018,50(6): 39-47.
[15].王景玄,王文达*,李华伟.钢管混凝土平面框架子结构抗连续倒塌精细有限元分析.工程力学,2018,35(6): 105-114.
[16].王景玄,王文达*,李华伟.采用静-动力转换方法的钢管混凝土框架受火倒塌非线性分析.工程科学与技术,2017,49(4): 53-60.
[17].Wang Wen-Da*, Li Hua-Wei, Wang Jing-Xuan. Progressive collapse analysis of concrete-filled steel tubular column to steel beam connections using multi-scale model. Structures, 2017, 9: 123-133.
[18].史艳莉,石晓飞,王文达*,王景玄,李华伟.圆钢管混凝土柱-H钢梁内隔板式节点抗连续倒塌机理研究.振动与冲击,2016,35(19):148-155.
[19].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.
Part.2
组合结构撞击性能
[1].Ji Sun-Hang, Wang Wen-Da*, Xian Wei. Impact and post-impact behaviours of steel-reinforced concrete-filled steel tubular columns after exposure to fire. Structures, 2022, 44: 680-697.
[2].Ji Sun-Hang, Wang Wen-Da*, Xian Wei. Lateral impact behaviour of square CFST columns under fire condition. Journal of Constructional Steel Research, 2022, 196: 107367.
[3].王文达*,陈振幅,纪孙航.长期持荷工况下钢管混凝土构件的抗撞击性能研究.爆炸与冲击,2021,41(8): 083106.
[4].纪孙航,王文达*,鲜威.CFRP加固火灾作用后圆钢管混凝土构件的侧向撞击性能研究.工程力学,2021,38(8): 178-191.
[5].纪孙航,史艳莉,王文达*.火灾作用后钢管混凝土构件侧向撞击性能研究.振动与冲击,2021,40(4): 179-187.
[6].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*. Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular (SRCFST) members subjected to lateral impact. Thin-Walled Structures, 2021, 160: 107409.
[7].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*, Wang Rui. Investigation on the lateral impact responses of circular concrete-filled double-tube (CFDT) members. Composite Structures, 2021, 255: 112993.
[8].Xian Wei, Wang Wen-Da*, Wang Rui, Chen Wen-Su, Hao Hong. Dynamic response of steel-reinforced concrete-filled circular steel tubular members under lateral impact loads. Thin-Walled Structures, 2020, 151: 106736.
[9].史艳莉,纪孙航,王文达*,郑龙.高温作用下钢管混凝土构件侧向撞击性能研究.爆炸与冲击,2020,40(4): 043303.
[10].史艳莉,鲜威,王蕊,王文达*.方套圆中空夹层钢管混凝土组合构件横向撞击试验研究.土木工程学报,2019,52(12): 11-21.
[11].史艳莉,何佳星,王文达*,鲜威,王蕊.内配圆钢管的圆钢管混凝土构件耐撞性能分析.振动与冲击,2019,38(9): 123-132.
Part.3
组合结构抗火
[1].Mao Wen-Jing, Zhou Kan, Wang Wen-Da*. Investigation on fire resistance of steel-reinforced concrete-filled stell tubular columns subjected to non-unform fire. Engineering structures, 2023, 280: 115653.
[2].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan. Fire performance on steel-reinforced concrete-filled steel tubular columns with fire protection. Journal of Constructional Steel Research, 2022, 199: 107580.
[3].魏国强,王文达*,毛文婧.震损后方钢管混凝土柱耐火性能试验研究.建筑结构学报,2022,43(12):123-134.
[4].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan, Du Er-Feng. Experimental study on steel-reinforced concrete-filled steel tubular columns under the fire. Journal of Constructional Steel Research, 2021, 185: 106867.
[5].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85,DOI: 10.6052/j.issn.1000-4750.2020.05.0259
[6].Mao Wen-Jing, Wang Wen-Da*, Xian Wei. Numerical analysis on fire performance of steel-reinforced concrete-filled steel tubular columns with square cross-section. Structures, 2020, 28: 1-16.
[7].Xu Lei*, Wang Ming-Tao, Bao Yan-Hong, Wang Wen-Da. Numerical analysis on structural behaviors of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to 3-side fire. International Journal of Steel Structures, 2017, 17(4): 1515-1528.
[8].Bao Yan-Hong, Xu Lei*, Wang Wen-Da, Sun Jian-Gang. Numerical analysis on mechanical property of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to ISO-834 standard fire. International Journal of Steel Structures, 2017, 17(4): 1561-1581.
[9].王景玄,王文达*.考虑火灾全过程的钢管混凝土柱-组合梁平面框架受力性能分析.振动与冲击,2014, 33(11): 124-129+135.
[10].王景玄,王文达*.不同火灾工况下钢梁-钢管混凝土柱平面框架受火全过程分析.建筑结构学报,2014,35(3): 102-109.
Part.4
组合结构抗震
[1].Rui Jia, Xian Wei, Wang Wen-Da*, Zhu Yan-Peng, Wang Jing-Xuan. Experimental study on seismic behaviour of the outrigger truss-core wall spatial joints with peripheral CFST columns. Structures, 2022, 41: 1014-1026.
[2].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.
[3].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85.
[4].王凤,王文达*,史艳莉.钢管混凝土框架柱计算长度研究.工程力学,2015,32(1): 168-175.
[5].王文达*,魏国强,李华伟.钢管混凝土框架-RC剪力墙混合结构滞回性能分析.振动与冲击,2013, 32(15): 45-50.
[6].王文达*,史艳莉,文天鹏.钢框架平端板连接组合节点弯矩-转角关系.振动与冲击,2013,32(10):43-49+68.
[7].史艳莉,王文达,靳垚.考虑墙体作用的低层冷弯薄壁型钢轻型房屋住宅体系弹塑性动力分析.工程力学,2012,29(12): 186-195.
[8].Han Lin-Hai, Wang Wen-Da, Tao Zhong. Performance of circular CFST column-to-steel beam frames under lateral cyclic loading. Journal of Constructional Steel Research, 2011, 67(5): 876-890.
[9].曲慧,王文达.钢管混凝土梁柱连接节点弯矩-转角关系实用计算方法研究.工程力学,2010,27(5): 106-114.
[10].王文达,韩林海.钢管混凝土柱-钢梁平面框架的滞回关系.清华大学学报(自然科学版),2009,49(12): 1934-1938.
[11].王文达,韩林海.钢管混凝土框架力学性能的简化二阶弹塑性分析.清华大学学报(自然科学版),2009,49(9): 1455-1458.
[12].Wang Wen-Da, Han Lin-Hai, Zhao Xiao-Ling. Analytical behavior of frames with steel beam to concrete-filled steel tubular column. Journal of Constructional Steel Research, 2009, 65(3): 497-508.
[13].王文达,韩林海.钢管混凝土框架力学性能的非线性有限元分析.建筑结构学报,2008,29(6): 75-83.
[14].王文达,韩林海.钢管混凝土框架实用荷载-位移恢复力模型研究.工程力学,2008,25(11): 62-69.
[15].Wang Wen-Da, Han Lin-Hai, Uy Brian. Experimental behaviour of steel reduced beam section (RBS) to concrete- filled CHS column connections. Journal of Constructional Steel Research, 2008, 64(5): 493-504.
[16].Han Lin-Hai, Wang Wen-Da, Zhao Xiao-Ling. Behaviour of steel beam to concrete-filled SHS column frames: Finite element model and verifications. Engineering Structures, 2008, 30(6): 1647-1658.
[17].王文达,韩林海,游经团.方钢管混凝土柱-钢梁外加强环节点滞回性能的实验研究,土木工程学报,2006,39(9):17-25.
[18].王文达,韩林海,陶忠.钢管混凝土柱-钢梁平面框架抗震性能的试验研究.建筑结构学报,2006,27(3):48-58.
Part.5
组合结构全寿命周期性能
[1].Wang Wen-Da*, Jia Zhi-Lu, Xian Wei, Shi Yan-Li. Performance of SRCFST member under long-term loading and preload on steel tube. Journal of Building Engineering, 2023, 73: 106700.
[2].Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Shi Yan-Li*. Cyclic and monotonic behaviour of steel-reinforced concrete-filled steel tubular columns. Thin-Walled Structures, 2023, 185: 110644.
[3].Wang Wen-Da*, Ji Sun-Hang, Shi Yan-Li. Experimental and numerical investigations on concrete-filled double-tubular slender columns under axial and eccentric loading. Journal of Constructional Steel Research, 2023, 201: 107714.
[4].Jia Zhi-Lu, Wang Wen-Da*, Shi Yan-Li, Xian Wei. Performance of steel-reinforced concrete-filled square steel tubular members under sustained axial compression loading. Engineering Structures, 2022, 263: 114464.
[5].贾志路,史艳莉,王文达*,鲜威.钢管初应力对内配型钢的圆钢管混凝土柱受压性能影响.建筑结构学报,2022,43(6): 63-74.
[6].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Xian Wei. Compression-bending behaviour of steel-reinforced concrete-filled circular steel tubular columns with preload. Structures, 2022, 36: 892-911.
[7].Jia Zhi-Lu, Shi Yan-Li, Xian Wei, Wang Wen-Da*. Torsional behaviour of concrete-filled circular steel tubular members under coupled compression and torsion. Structures. 2021, 34: 931-946.
[8].王文达*,纪孙航,史艳莉,张宸.内配型钢方钢管混凝土构件压弯剪性能研究.土木工程学报,2021,54(1): 76-87.
[9].Shi Yan-Li, Jia Zhi-Lu, Wang Wen-Da*, Xian Wei, Tan Ee Loon. Experimental and numerical study on torsional behaviour of steel-reinforced concrete-filled square steel tubular members. Structures, 2021, 32: 713-730.
[10].Wang Wen-Da*, Ji Sun-Hang, Xian Wei, Shi Yan-Li. Experimental and numerical investigations of steel-reinforced concrete-filled steel tubular members under compression-bending-shear loads. Journal of Constructional Steel Research, 2021, 181: 106609.
[11].Wang Wen-Da*, Xian Wei, Hou Chao, Shi Yan-Li. Experimental investigation and FE modelling of the flexural performance of square and rectangular SRCFST members. Structures, 2020, 27: 2411-2425.
[12].Wang Wen-Da*, Jia Zhi-Lu, Shi Yan-Li, Tan Ee Loon. Performance of steel-reinforced circular concrete-filled steel tubular members under combined compression and torsion. Journal of Constructional Steel Research, 2020, 173: 106271.
[13].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Mechanical behaviour of circular steel-reinforced concrete-filled steel tubular members under pure bending loads. Structures, 2020, 25: 8-23.
[14].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Experimental performance of circular concrete-filled steel tubular members with inner profiled steel under lateral shear load. Engineering Structures, 2019, 201: 109746.
[15].史艳莉*,周绪红,鲜威,王文达.无端板矩形钢管混凝土构件基本剪切性能研究.工程力学,2018,35(12): 25-33.
[16].王文达,于清.混凝土浇筑过程中方钢管柱的力学性能.清华大学学报(自然科学版),2013,53(1):6-11.
Part.6
中空夹层钢管混凝土结构
[1].Fan Jia-Hao, Wang Wen-Da*, Shi Yan-Li, Ji Sun-Hang. Torsional behaviour of tapered CFDST members with large void ratio. Journal of Building Engineering, 2022, 52: 104434.
[2].Shi Yan-Li, Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Fan Jia-Hao. Axial compressive behaviour of tapered CFDST stub columns with large void ratio. Journal of Constructional Steel Research, 2022, 191: 107206.
[3].Duan Li-Xin, Wang Wen-Da*, Xian Wei, Shi Yan-Li. Shear response of circular-in-square CFDST members: Experimental investigation and finite element analysis. Journal of Constructional Steel Research, 2022, 190: 107160.
[4].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.
[5].Wang Wen-Da*, Fan Jia-Hao, Shi Yan-Li, Xian Wei. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending. Journal of Constructional Steel Research, 2021, 182: 106689.
[6].史艳莉,张超峰,鲜威,王文达*.圆锥形中空夹层钢管混凝土偏压构件受力性能研究.建筑结构学报,2021,42(5): 155-164+176.
Part.7
子程序开发等
[1].Tao Zhong*, Katwal Utsab, Uy Brian, Wang Wen-Da. Simplified nonlinear simulation of rectangular concrete-filled steel tubular columns. ASCE Journal of Structural Engineering, 2021, 147(6): 04021061.
[2].Shi Yan-Li*, Li Hua-Wei, Wang Wen-Da, Hou Chao. A fiber model based on secondary development of ABAQUS for elastic-plastic analysis. International Journal of Steel Structures, 2018, 18(5): 1560-1576.
[3].Katwal Utsab, Tao Zhong*, Hassan Md Kamrul, Wang Wen-Da. Simplified numerical modeling of axially loaded circular concrete-filled steel stub columns. ASCE Journal of Structural Engineering, 2017, 143(12): 04017169.
[4].王文达*,魏国强.基于纤维模型的型钢混凝土组合剪力墙滞回性能分析.振动与冲击,2015,35(6):30-35.
[5].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.
[6].王文达*,杨全全,李华伟.基于分层壳单元与纤维梁单元组合剪力墙滞回性能分析.振动与冲击,2014, 33(16):142-149.
[7].李华伟,王文达*.ABAQUS二次开发在钢管混凝土结构有限元分析中的应用.建筑结构学报,2013,34(s1):353-358.
Part.8
装配式钢筋混凝土结构
[1].Yuan Yu-Jie, Wang Wen-Da*, Huang Hua. Deformation mechanism of steel artificial controllable plastic hinge in prefabricate frame. Journal of Constructional Steel Reserarch, 2023, 201: 107735.
Part.9
新型高性能结构材料
[1].Gao Fang-Fang, Tian Wei, Wang Wen-Da. Residual impact resistance behavior of concrete containing carbon nanotubes after exposure to high temperatures. Construction and Building Materials, 2023, 366: 130183.
编辑:郑 龙
审核:王文达
✦+
+
王文达课题组
微信号|wangwd_group
兰州理工大学土木工程学院王文达课题组
点击蓝字 阅读原文
+