引用格式:
Fan JH, Wang WD, Shi YL, Zheng L. Low-cycle fatigue behaviour of concrete-filled double skin steel tubular (CFDST) members for wind turbine towers. Thin-Walled Structures, 2024, 205: 112384.
Highlights:
1. Low-cycle fatigue tests of CFDST specimens with different loading are conducted.
2. The degradation mechanism subjected to cyclic loads is investigated.
3. The effects of hollow, slenderness, and drift ratios are estimated.
4. The low-fatigue life is related to defects and stress levels.
论文信息:
论文链接:https://doi.org/10.1016/j.tws.2024.112384
论文50天免费下载链接(至2024年10月21日):
https://authors.elsevier.com/c/1jhotx-8Rbmq-
DOI: 10.1016/j.tws.2024.112384
一、研究背景
中空夹层钢管混凝土(Concrete Filled Double Skin Steel Tube, CFDST)结构因其出色的承载能力、耐久性和抗震性能,具备替代传统风电塔筒的能力。这种结构不仅能够有效减轻风电塔的自重,降低基础施工费用,还为电缆及其他设备的布置提供了更多空间,从而提升了风电塔的整体设计效率以及极端荷载下的抵抗能力。近日,超强台风“摩羯”登陆海南文昌沿海地区,风力最大达到17级,对附近风场的风电机组造成了严重影响,如图1所示。相比传统钢塔,CFDST结构可提升水平荷载作用下的变形能力,避免局部变形影响结构整体承载能力甚至结构倒塌的发生。此类高耸建筑不但承受竖向荷载还承担使用环境决定的水平随机荷载,而随机荷载的特点致使结构可能会遭受疲劳问题的困扰。因此,研究CFDST构件的低周疲劳性能是解决此类结构耐久性问题重要的一环。
图1 台风“摩羯”造成的风电机组破坏 (部分照片来源:微博视频截图)
本研究通过进行两种不同的低周往复加载方式,研究构件在不同几何参数(空心率、长细比)以及荷载条件下(轴压比及不同的等幅加载幅度)的疲劳性能。分析了各参数在等幅加载下对试件典型破坏模式、承载能力及耗散能力的影响机制。并探讨了循环荷载引起的不同水平塑性变形的机制及其对疲劳寿命的影响。
二、试验准备与现象
进行中空夹层钢管混凝土柱低周疲劳试验共16个。试验所需竖向荷载大小按照T/CCES 7-2020《中空夹层钢管混凝土结构技术规程》的计算方法进行确定。图2为试验装置的三维示意图与试验中加载方式示意。
图2试验装置预加载制度示意
图3展示了试件不同参数下的破坏形态以及对应的加载时刻。试件整体呈现弯曲破坏,局部破坏包含塑性铰区域外钢管的鼓曲、断裂;加劲肋失效;混凝土开裂与压碎。现象说明在滞回加载过程中,试件最终破坏主要由大变形控制,而等幅加载试件初始裂纹以及破坏时刻均与幅值大小有关。增大竖向荷载、侧移率以及空心率会加剧混凝土的破坏程度。在确保截面尺寸相同的情况下,小长细比试件表现出更严重的拉压损伤。内钢管未表现出明显的鼓曲现象,加载方式、等幅加载的不同幅值、轴压比、长细比以及空心率都不影响其破坏形态。表1汇总了试件的低周疲劳寿命以及破坏现象。
图3 往复加载下试件的破坏形态汇总
图4所示为两种加载制度下试件的滞回曲线。对于等幅试件,增大长细比会显著降低最大位移承载力,增大轴压比和空心率可增大最大位移承载力,但轴压比会导致塑性阶段加快承载力和刚度退化程度,空心率增大会导致曲线捏缩。侧移率为2%和4%的试件未表现出强度、刚度的退化,而6%侧移率试件由拉应力产生的塑性变形十分明显且损伤累积迅速导致试件表现出明显的性能退化。
图4 滞回曲线对比
图5对比了试件CFDST5H32不同高度处外钢管纵向应变以及各循环应变峰值。钢材断裂导致了外钢管拉应力峰值随着加载的进行而减小。所有参数通过改变外钢管拉应变水平呈现出不同的破坏发展规律。塑性区域拉应力越大,试件疲劳寿命越短且峰值拉应变退化越明显。
图5 应变加载次数曲线
三、性能退化
图6为中空夹层钢管混凝土最大位移承载力的退化情况。2%侧移率的持续循环加载不会发生明显的承载力下降现象,但侧移率的增加使最大位移承载力出现下降趋势。其中,轴压比为0.5时,由于高水平的竖向荷载导致局部钢管屈曲,承载力在未发生贯穿破坏前出现下降。初始裂纹并不影响试件承载力但当裂缝在钢管壁厚方向贯穿并向水平方向发展时承载力下降,因为裂缝的发展影响有效抗弯截面面积。
图6 各参数对最大位移对应承载力的影响
图7为不同参数下试件能量耗散以及累积耗能比的情况。试件各循环耗能随着循环次数逐渐减小,凸显了低周疲劳累积损伤的发展。通过累积耗能比可发现,导致耗能水平不同的主要因素是侧移大小,轴压比以及空心率对耗能退化率的影响是不明显的。在等幅位移荷载作用下,试件损伤在不同幅值下均呈现线性累积。
图7循环耗能与耗能累积比
图8展示了终止加载时循环耗能与初始循环耗能的比值(耗能指标)以及累积耗能比随参数变化的情况。当幅值小于4%时,等幅加载的耗能指标随着幅值的增加减小,耗能退化随着幅值的增加而加剧。减小长细比以及增大空心率可改善耗能退化情况。低幅值试件累积耗能较高,主要由弹性耗能组成,塑性耗能占比少。因此试件低周寿命增加,累积耗能随之增加。
图8 参数对耗能能力的影响
四、结论
Conclusions
1
疲劳低周往复加载下中空夹层钢管混凝土试件以弯曲破坏为主,钢管在塑性铰区域应力集中处发生断裂。夹层混凝土在塑性铰位置发生水平或斜向分布的压缩破坏。
2
等幅加载幅值使钢管应力水平差异,大侧移率试件滞回曲线最饱满呈纺锤形,小侧移率试件接近弹性阶段呈平行四边形。结构损伤累积导致承载力在钢管断裂前下降,钢管撕裂后部分钢管退出工作使下降趋势加剧。
3
材料初始缺陷及应力集中导致初始裂纹的产生时刻提前。应力水平增大,每次循环的损伤增加,钢管裂缝贯穿时刻提前。幅值的增长会加剧结构的不可恢复耗能,表现出显著的循环耗能退化现象。
4
预加载会降低中空夹层钢管混凝土试件的承载力、耗能并提前初始裂缝的出现时刻。侧移率的增加会显著降低疲劳寿命。提高轴压比及空心率可推迟试件的疲劳断裂时刻,减小长细比会表现出相反影响。
六、相关文献
作者简介
范家浩:男,甘肃人,博士研究生。主要从事钢与混凝土组合结构静力性能研究。
2018.09-2021.06,兰州理工大学结构工程专业,硕士研究生(导师:王文达教授)
郑龙:男,辽宁人,讲师。主要从事钢与混凝土组合结构的抗震、抗连续倒塌及抗冲击性能研究。2023年甘肃省优秀博士毕业论文获得者。
2016.09-2019.06,兰州理工大学 土木工程学院 结构工程专业,硕士研究生(导师:王文达教授、史艳莉教授)
相关研究
(可点击进入)
Part.1
组合结构连续性倒塌
1.组合结构连续性倒塌:次边柱失效下钢管混凝土组合框架抗连续性倒塌性能
2.组合结构连续性倒塌:钢管混凝土柱-组合梁节点抗连续性倒塌性能
3.组合结构连续性倒塌:简化多尺度模型在组合框架连续倒塌研究中的应用
4.组合结构连续性倒塌:装配式钢管混凝土柱-组合梁节点抗连续性倒塌性能
5.组合结构抗连续倒塌:钢管混凝土组合框架-装配式拉伸钢支撑结构抗连续倒塌性能研究
6.组合结构抗连续倒塌:全填充墙钢管混凝土组合框架抗连续倒塌性能研究
7.组合结构抗连续倒塌:冲击荷载下钢管混凝土柱-组合梁节点的抗连续倒塌性能研究
8.组合结构抗连续倒塌:钢管混凝土框架-RC剪力墙结构抗连续倒塌试验研究
Part.2
组合结构全寿命周期性能
1.组合结构全寿命周期性能:钢管初应力对内配型钢圆钢管混凝土受压构件力学性能影响
2.组合结构全寿命周期性能:施工初应力对内配型钢圆钢管混凝土压弯构件力学性能影响
3.组合结构全寿命周期性能:方套圆中空夹层钢管混凝土构件剪切性能
4.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——短柱轴压性能
5.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——偏压性能
6.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——纯弯性能
7.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压弯构件滞回性能
8.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压扭性能
9.组合结构全寿命周期性能:长期荷载作用下内配型钢方钢管混凝土力学性能研究
11.组合结构全寿命周期性能:内配型钢钢管混凝土压弯构件在单调及往复荷载下的受力性能
Part.3
混合结构抗震性能
1.混合结构抗震性能:钢管混凝土伸臂桁架-核心筒体剪力墙空间节点抗震性能试验研究
Part.4
组合结构撞击性能
2.组合结构撞击性能:火灾后内配型钢钢管混凝土柱侧向撞击和撞后性能研究
3.组合结构撞击性能:火灾后钢管混凝土构件侧向撞击性能试验和数值研究
4.组合结构撞击性能:火灾后内配型钢钢管混凝土构件侧向撞击性能试验研究Part.5
组合结构抗火性能
2.组合结构抗火性能:带防火保护层的内配型钢钢管混凝土柱耐火性能分析
Part.6
装配式钢筋混凝土结构
Part.7
新型高性能结构材料
Part.8
新型吸能结构
Part.9
风电工程结构
课题组主要成果
Part.1
组合结构连续性倒塌
[1]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse mechanism and reinforcement methods of composite frame with CFST columns and infill walls. Journal of Constructional Steel Research, 2023, 208: 108022.
[2]. Wang Wen-Da*, Zheng Long*, Xian Wei. Simplified multi-scale simulation investigation of 3D composite floor substructures under different column-removal scenarios. Journal of Constructional Steel Research, 2023,208: 108002.
[3]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse performance of concrete-filled steel tubular composite frame with RC shear walls under middle column removal. Journal of Building Engineering, 2023, 64: 105611.
[4]. Wang Wen-Da*, Zheng Long, Xian Wei. Performance of the CFST column to composite beam connection under static and impact loads. Journal of Constructional Steel Research, 2022,198: 107567.
[5]. 王景玄*,杨永,孙衍浩. 全填充墙钢管混凝土组合框架抗连续倒塌性能研究[J]. 土木工程学报,2022,55(8): 11-13.
[6]. Wang Jing-Xuan, Shen Ya-Jun, Gao Shan*, Wang Wen-Da. Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal. Engineering Structures, 2022, 266: 114635.
[7].Zheng Long, Wang Wen-Da*, Xian Wei. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connection with CFST column and composite beam. Engineering Structures, 2022, 256: 114061.
[8].Zheng Long, Wang Wen-Da*. Multi-scale numerical simulation analysis of CFST column-composite beam frame under a column-loss scenario. Journal of Constructional Steel Research, 2022, 190: 107151.
[9].Zheng Long, Wang Wen-Da*, Li Hua-Wei. Progressive collapse resistance of composite frame with concrete-filled steel tubular column under a penultimate column removal scenario. Journal of Constructional Steel Research, 2022, 189: 107085.
[10].王景玄*,杨永,周侃,李秋颖. 角柱失效下钢管混土柱-组合梁框架抗连续倒塌能力研究. 工程力学,2022,39(5):105-118.
[11].Wang Jiang-Xuan*, Yang Yong, Xian Wei, Li Qiu-Ying. Progressive collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted-welded hybrid connection. International Journal of Steel Structures, 2020, 20(5), 1618-1635.
[12].Wang Wen-Da*, Zheng Long, Li Hua-Wei. Experimental investigation of composite joints with concrete-filled steel tubular column under column removal scenario. Engineering Structures, 2020, 219: 110956.
[13].郑龙,王文达*,李华伟,李天昊.钢管混凝土柱-钢梁穿心螺栓外伸端板式节点抗连续倒塌性能研究.建筑结构学报,2019,40(11): 140-149
[14].Shi Yan-Li, Zheng Long, Wang Wen-Da*. The influence of key component characteristic on the resistance to progressive collapse of composite joint with the concrete-filled steel tubular column and steel beam with through bolt-extended endplate. Frontiers in Materials, 2019, 6: 64.
[15].王文达*,郑龙,魏国强.穿心构造的钢管混凝土柱-钢梁节点抗连续性倒塌性能分析与评估.工程科学与技术,2018,50(6): 39-47.
[16].王景玄,王文达*,李华伟.钢管混凝土平面框架子结构抗连续倒塌精细有限元分析.工程力学,2018,35(6): 105-114.
[17].王景玄,王文达*,李华伟.采用静-动力转换方法的钢管混凝土框架受火倒塌非线性分析.工程科学与技术,2017,49(4): 53-60.
[18].Wang Wen-Da*, Li Hua-Wei, Wang Jing-Xuan. Progressive collapse analysis of concrete-filled steel tubular column to steel beam connections using multi-scale model. Structures, 2017, 9: 123-133.
[19].史艳莉,石晓飞,王文达*,王景玄,李华伟.圆钢管混凝土柱-H钢梁内隔板式节点抗连续倒塌机理研究.振动与冲击,2016,35(19):148-155.
[20].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.
Part.2
组合结构撞击性能
[1].纪孙航,王文达*,赵晖,王蕊,史艳莉.受火后内配型钢方钢管混凝土构件抗侧向撞击性能试验研究.建筑结构学报,2024,45(3):148-159.
[2].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Shi Yan-Li*, Xian Wei. Lateral impact behaviour of post-fire steel-reinforced concrete-filled steel tubular members: Experiment and evaluation method. Engineering Structures, 2023, 293: 116612.
[3].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Xian Wei, Wang Rui, Shi Yan-Li*. Experimental and numerical investigation on the lateral impact responses of CFST members after exposure to fire. Thin-Walled Structures, 2023, 190: 110968.
[9].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*. Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular (SRCFST) members subjected to lateral impact. Thin-Walled Structures, 2021, 160: 107409.
[10].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*, Wang Rui. Investigation on the lateral impact responses of circular concrete-filled double-tube (CFDT) members. Composite Structures, 2021, 255: 112993.
[11].Xian Wei, Wang Wen-Da*, Wang Rui, Chen Wen-Su, Hao Hong. Dynamic response of steel-reinforced concrete-filled circular steel tubular members under lateral impact loads. Thin-Walled Structures, 2020, 151: 106736.
[12].史艳莉,纪孙航,王文达*,郑龙.高温作用下钢管混凝土构件侧向撞击性能研究.爆炸与冲击,2020,40(4): 043303.
[13].史艳莉,鲜威,王蕊,王文达*.方套圆中空夹层钢管混凝土组合构件横向撞击试验研究.土木工程学报,2019,52(12): 11-21.
[14].史艳莉,何佳星,王文达*,鲜威,王蕊.内配圆钢管的圆钢管混凝土构件耐撞性能分析.振动与冲击,2019,38(9): 123-132.
Part.3
组合结构抗火
[1].Wang Wen-Da*, Mao Wen-Jing, Zhou Kan. Experimental investigation on residual capacity of steel-reinforced concrete-filled thin-walled steel tubular columns subjected to combined loading and temperature. Thin-Walled Structures, 2024, 197: 111557.
[2].Mao Wen-Jing, Zhou Kan, Wang Wen-Da*. Investigation on fire resistance of steel-reinforced concrete-filled stell tubular columns subjected to non-unform fire. Engineering structures, 2023, 280: 115653.
[3].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan. Fire performance on steel-reinforced concrete-filled steel tubular columns with fire protection. Journal of Constructional Steel Research, 2022, 199: 107580.
[4].魏国强,王文达*,毛文婧.震损后方钢管混凝土柱耐火性能试验研究.建筑结构学报,2022,43(12):123-134.
[5].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan, Du Er-Feng. Experimental study on steel-reinforced concrete-filled steel tubular columns under the fire. Journal of Constructional Steel Research, 2021, 185: 106867.
[6].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85,DOI: 10.6052/j.issn.1000-4750.2020.05.0259
[7].Mao Wen-Jing, Wang Wen-Da*, Xian Wei. Numerical analysis on fire performance of steel-reinforced concrete-filled steel tubular columns with square cross-section. Structures, 2020, 28: 1-16.
[8].Xu Lei*, Wang Ming-Tao, Bao Yan-Hong, Wang Wen-Da. Numerical analysis on structural behaviors of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to 3-side fire. International Journal of Steel Structures, 2017, 17(4): 1515-1528.
[9].Bao Yan-Hong, Xu Lei*, Wang Wen-Da, Sun Jian-Gang. Numerical analysis on mechanical property of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to ISO-834 standard fire. International Journal of Steel Structures, 2017, 17(4): 1561-1581.
[10].王景玄,王文达*.考虑火灾全过程的钢管混凝土柱-组合梁平面框架受力性能分析.振动与冲击,2014, 33(11): 124-129+135.
[11].王景玄,王文达*.不同火灾工况下钢梁-钢管混凝土柱平面框架受火全过程分析.建筑结构学报,2014,35(3): 102-109.
Part.4
组合结构抗震
[1].Rui Jia, Xian Wei, Wang Wen-Da*, Zhu Yan-Peng, Wang Jing-Xuan. Experimental study on seismic behaviour of the outrigger truss-core wall spatial joints with peripheral CFST columns. Structures, 2022, 41: 1014-1026.
[2].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.
[3].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85.
[4].王凤,王文达*,史艳莉.钢管混凝土框架柱计算长度研究.工程力学,2015,32(1): 168-175.
[5].王文达*,魏国强,李华伟.钢管混凝土框架-RC剪力墙混合结构滞回性能分析.振动与冲击,2013, 32(15): 45-50.
[6].王文达*,史艳莉,文天鹏.钢框架平端板连接组合节点弯矩-转角关系.振动与冲击,2013,32(10):43-49+68.
[7].史艳莉,王文达,靳垚.考虑墙体作用的低层冷弯薄壁型钢轻型房屋住宅体系弹塑性动力分析.工程力学,2012,29(12): 186-195.
[8].Han Lin-Hai, Wang Wen-Da, Tao Zhong. Performance of circular CFST column-to-steel beam frames under lateral cyclic loading. Journal of Constructional Steel Research, 2011, 67(5): 876-890.
[9].曲慧,王文达.钢管混凝土梁柱连接节点弯矩-转角关系实用计算方法研究.工程力学,2010,27(5): 106-114.
[10].王文达,韩林海.钢管混凝土柱-钢梁平面框架的滞回关系.清华大学学报(自然科学版),2009,49(12): 1934-1938.
[11].王文达,韩林海.钢管混凝土框架力学性能的简化二阶弹塑性分析.清华大学学报(自然科学版),2009,49(9): 1455-1458.
[12].Wang Wen-Da, Han Lin-Hai, Zhao Xiao-Ling. Analytical behavior of frames with steel beam to concrete-filled steel tubular column. Journal of Constructional Steel Research, 2009, 65(3): 497-508.
[13].王文达,韩林海.钢管混凝土框架力学性能的非线性有限元分析.建筑结构学报,2008,29(6): 75-83.
[14].王文达,韩林海.钢管混凝土框架实用荷载-位移恢复力模型研究.工程力学,2008,25(11): 62-69.
[15].Wang Wen-Da, Han Lin-Hai, Uy Brian. Experimental behaviour of steel reduced beam section (RBS) to concrete- filled CHS column connections. Journal of Constructional Steel Research, 2008, 64(5): 493-504.
[16].Han Lin-Hai, Wang Wen-Da, Zhao Xiao-Ling. Behaviour of steel beam to concrete-filled SHS column frames: Finite element model and verifications. Engineering Structures, 2008, 30(6): 1647-1658.
[17].王文达,韩林海,游经团.方钢管混凝土柱-钢梁外加强环节点滞回性能的实验研究,土木工程学报,2006,39(9):17-25.
[18].王文达,韩林海,陶忠.钢管混凝土柱-钢梁平面框架抗震性能的试验研究.建筑结构学报,2006,27(3):48-58.
Part.5
组合结构全寿命周期性能
[1].Wu Xiao-Ming, Shi Yan-Li*, Zheng Long, Wang Wen-Da*. Performance of rectangular SRCFST stub columns under long-term loading and preload on steel tube. Structures, 2024, 61: 106110.
[2].王文达,陈亚明,纪孙航,史艳莉.双钢管混凝土构件滞回性能试验与分析[J].建筑结构学报,2023,45(1):128-138.
[3].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.
[4].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Zheng Long. Numerical studies on creep behaviour of SRCFST columns with initial stress of steel tube. Journal of Constructional Steel Research, 2023, 201: 108214.
[5].Wang Wen-Da*, Jia Zhi-Lu, Xian Wei, Shi Yan-Li. Performance of SRCFST member under long-term loading and preload on steel tube. Journal of Building Engineering, 2023, 73: 106700.
[6].Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Shi Yan-Li*. Cyclic and monotonic behaviour of steel-reinforced concrete-filled steel tubular columns. Thin-Walled Structures, 2023, 185: 110644.
[7].Wang Wen-Da*, Ji Sun-Hang, Shi Yan-Li. Experimental and numerical investigations on concrete-filled double-tubular slender columns under axial and eccentric loading. Journal of Constructional Steel Research, 2023, 201: 107714.
[8].Jia Zhi-Lu, Wang Wen-Da*, Shi Yan-Li, Xian Wei. Performance of steel-reinforced concrete-filled square steel tubular members under sustained axial compression loading. Engineering Structures, 2022, 263: 114464.
[9].贾志路,史艳莉,王文达*,鲜威.钢管初应力对内配型钢的圆钢管混凝土柱受压性能影响.建筑结构学报,2022,43(6): 63-74.
[10].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Xian Wei. Compression-bending behaviour of steel-reinforced concrete-filled circular steel tubular columns with preload. Structures, 2022, 36: 892-911.
[11].Jia Zhi-Lu, Shi Yan-Li, Xian Wei, Wang Wen-Da*. Torsional behaviour of concrete-filled circular steel tubular members under coupled compression and torsion. Structures. 2021, 34: 931-946.
[12].王文达*,纪孙航,史艳莉,张宸.内配型钢方钢管混凝土构件压弯剪性能研究.土木工程学报,2021,54(1): 76-87.
[13].Shi Yan-Li, Jia Zhi-Lu, Wang Wen-Da*, Xian Wei, Tan Ee Loon. Experimental and numerical study on torsional behaviour of steel-reinforced concrete-filled square steel tubular members. Structures, 2021, 32: 713-730.
[14].Wang Wen-Da*, Ji Sun-Hang, Xian Wei, Shi Yan-Li. Experimental and numerical investigations of steel-reinforced concrete-filled steel tubular members under compression-bending-shear loads. Journal of Constructional Steel Research, 2021, 181: 106609.
[15].Wang Wen-Da*, Xian Wei, Hou Chao, Shi Yan-Li. Experimental investigation and FE modelling of the flexural performance of square and rectangular SRCFST members. Structures, 2020, 27: 2411-2425.
[16].Wang Wen-Da*, Jia Zhi-Lu, Shi Yan-Li, Tan Ee Loon. Performance of steel-reinforced circular concrete-filled steel tubular members under combined compression and torsion. Journal of Constructional Steel Research, 2020, 173: 106271.
[17].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Mechanical behaviour of circular steel-reinforced concrete-filled steel tubular members under pure bending loads. Structures, 2020, 25: 8-23.
[18].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Experimental performance of circular concrete-filled steel tubular members with inner profiled steel under lateral shear load. Engineering Structures, 2019, 201: 109746.
[19].史艳莉*,周绪红,鲜威,王文达.无端板矩形钢管混凝土构件基本剪切性能研究.工程力学,2018,35(12): 25-33.
[20].王文达,于清.混凝土浇筑过程中方钢管柱的力学性能.清华大学学报(自然科学版),2013,53(1):6-11.
Part.6
中空夹层钢管混凝土结构
[1].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.
[2].Fan Jia-Hao, Wang Wen-Da*, Shi Yan-Li, Ji Sun-Hang. Torsional behaviour of tapered CFDST members with large void ratio. Journal of Building Engineering, 2022, 52: 104434.
[3].Shi Yan-Li, Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Fan Jia-Hao. Axial compressive behaviour of tapered CFDST stub columns with large void ratio. Journal of Constructional Steel Research, 2022, 191: 107206.
[4].Duan Li-Xin, Wang Wen-Da*, Xian Wei, Shi Yan-Li. Shear response of circular-in-square CFDST members: Experimental investigation and finite element analysis. Journal of Constructional Steel Research, 2022, 190: 107160.
[5].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.
[6].Wang Wen-Da*, Fan Jia-Hao, Shi Yan-Li, Xian Wei. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending. Journal of Constructional Steel Research, 2021, 182: 106689.
[7].史艳莉,张超峰,鲜威,王文达*.圆锥形中空夹层钢管混凝土偏压构件受力性能研究.建筑结构学报,2021,42(5): 155-164+176.
Part.7
纤维模型与子程序开发等
[1].Tao Zhong*, Katwal Utsab, Uy Brian, Wang Wen-Da. Simplified nonlinear simulation of rectangular concrete-filled steel tubular columns. ASCE Journal of Structural Engineering, 2021, 147(6): 04021061.
[2].Shi Yan-Li*, Li Hua-Wei, Wang Wen-Da, Hou Chao. A fiber model based on secondary development of ABAQUS for elastic-plastic analysis. International Journal of Steel Structures, 2018, 18(5): 1560-1576.
[3].Katwal Utsab, Tao Zhong*, Hassan Md Kamrul, Wang Wen-Da. Simplified numerical modeling of axially loaded circular concrete-filled steel stub columns. ASCE Journal of Structural Engineering, 2017, 143(12): 04017169.
[4].王文达*,魏国强.基于纤维模型的型钢混凝土组合剪力墙滞回性能分析.振动与冲击,2015,35(6):30-35.
[5].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.
[6].王文达*,杨全全,李华伟.基于分层壳单元与纤维梁单元组合剪力墙滞回性能分析.振动与冲击,2014, 33(16):142-149.
[7].李华伟,王文达*.ABAQUS二次开发在钢管混凝土结构有限元分析中的应用.建筑结构学报,2013,34(s1):353-358.
Part.8
装配式钢筋混凝土结构
[1].Yuan Yu-Jie, Wang Wen-Da*, Huang Hua. Deformation mechanism of steel artificial controllable plastic hinge in prefabricate frame. Journal of Constructional Steel Reserarch, 2023, 201: 107735.
Part.9
新型高性能结构材料
[1].Gao Fang-Fang, Tian Wei, Wang Wen-Da*. Residual impact resistance behavior of concrete containing carbon nanotubes after exposure to high temperatures. Construction and Building Materials, 2023, 366: 130183.
Part.10
新型吸能结构
[1].Zheng Long, Li Fu-Qi, Wang Wen-Da*, Shi Yan-Li*. Bionic corrugated sandwich cylindrical tubes subjected to transverse impact. Structures, 2024, 64: 106599.
[2].Zheng Long, Li Fu-Qi, Wang Wen-Da*. A honeycomb panel-based protective device for steel parking structure against transverse impact. Journal of Constructional Steel Research, 2023, 211: 108203.
Part.11
风电工程结构
[1].Fan Jia-Hao, Wang Wen-Da, Shi Yan-Li, Zheng Long. Low-cycle fatigue behaviour of concrete-filled double skin steel tubular (CFDST) members for wind turbine towers. Thin-Walled Structures, 2024, 205: 112384.
[2].Shi Yan-Li, Ren Jia-Xing, Fan Jia-Hao, Wang Wen-Da, Wang Hai-Cui*. Bonding-slip behaviour of steel-concrete interfaces in CFDST members with PBL ribs. Engineering Structures, 2024, 314: 118384.
[3].Duan Li-Xin, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Dynamic response analysis of monopile CFDST wind turbine tower system under wind-wave-seismic coupling action. Thin-Walled Structures, 2024, 202: 112089.
编辑:郑 龙
审核:王文达
✦+
+
王文达课题组
微信号|wangwd_group
兰州理工大学土木工程学院王文达课题组
点击蓝字 阅读原文
+