组合结构全寿命周期性能:CFRP-混凝土-钢管组合柱轴压性能研究

文摘   科学   2024-10-14 15:01   甘肃  


引用格式:

Wang B, Shi YL, Zheng L, Wang WD. Axial compressive behavior of hybrid CFRP-concrete-steel double-skin tubular columns. Journal of Constructional Steel Research, 2024, 223: 109056.


Highlights:

1. The axial compressive behavior of DSTCs under core cross-section loading is investigated.

2. The thickness and winding direction of CFRP, hollow ratio, and slenderness ratio are discussed.

3. The axial compressive bearing capacity calculation for DSTCs is validated.

论文信息:

论文链接:https://doi.org/10.1016/j.jcsr.2024.109056

论文50天免费下载链接(20241120)

https://authors.elsevier.com/c/1jsNf,3HWfL-Ei

DOI: 10.1016/j.jcsr.2024.109056


一、研究背景

在复杂环境地区下,传统材料的局限性日益突出,结构的耐久性和维修费用是必须考虑的问题。随着建筑材料的发展,由纤维和基体材料制成的纤维增强聚合物(FRP)正逐渐被应用于建筑工程领域。FRP具有优异的强度和刚度、重量轻、耐腐蚀性等特点,广泛应用在混凝土柱和桥梁的加固和修复以及组合柱中,可以有效提高结构的承载能力、刚度和耐久性。FRP-混凝土-钢双壁空心柱(Double-skin tubular column,简称DSTC)是一种结合FRP与传统建筑材料的新型组合构件,具有质量轻、强度高、抗腐蚀性能好等优点,其中FRP和钢管限制了混凝土的变形,充分发挥各自材料的优势,研究DSTC组合柱的轴压性能很有必要。但目前关于核心加载下DSTC组合长柱的轴压性能,以及FRP缠绕方向的研究非常有限。为此,本文采用CFRP作为外管,完成了18个在核心加载下DSTC组合柱的轴压试验,验证了短柱的相关承载力计算方法,并拟合出了该类长柱的稳定系数。



二、试验结果

共设计了18个DSTC试件进行轴压试验,包括9个短柱和9个长柱。试验参数包括:CFRP管厚度(tc:1mm、2mm和3mm);CFRP管缠绕方向(θ:0°、45°和90°);空心率(χ:0.5、0.7和0.8),以及长细比(6和32)。试验测量内容包括试件的破坏形态、短柱的荷载-位移(N-Δ)曲线、长柱的荷载-挠度(N-μ)曲线。试件制备及截面如图1,试验的加载装置和测量方案如图2所示。


图1 试件的制备及截面示意图

图2 试验的加载装置和测量方案


图3为DSTC短柱和长柱的破坏形态。试验结果表明,DSTC组合柱的破坏形态和CFRP管的缠绕方向密切相关,当CFRP管断裂时试件发出巨响。在加载过程中,长柱出现侧向弯曲的现象。空心率越小,柱整体的破坏情况越严重。45°和0°缠绕方向的CFRP管约束混凝土的破坏情况较为严重,而缠绕方向为90°约束下混凝土的破坏情况最小,试件的承载力更高(图4和图5)。


图3 DSTC柱的破坏形态

图4 短柱的荷载-位移曲线

图5 长柱的荷载-挠度曲线


图6讨论了不同参数的影响。随碳纤维管厚度的增加,试件的极限承载力和延性均提高;随空心率的增加,试件的极限承载力降低,而延性增大;CFRP的纤维环向缠绕时,试件的极限承载力和延性更好;随着长细比的增大,试件的极限承载力降低。

图6 不同参数的影响



三、有限元分析

为分析核心加载下DSTC柱的轴压作用机理,并扩大参数研究范围,采用有限元软件ABAQUS建立了DSTC柱的轴压模型(如图7),试验和模拟的极限承载力之比的平均值为1.004,相应的标准差为0.041,有限元模型也很好的预测了CFRP管的断裂(如图8)。


图7 有限元的边界和网格划分

图8 试件的破坏形态对比


基于建立的有限元模型,分析了DSTC柱在轴压作用下的受力机理,包括典型的短柱N-Δ曲线和长柱N-μ曲线(如图9)、截面应力分布(如图10)。结果表明,DSTC短柱中混凝土产生变形后其承载力持续增大,曲线的斜率主要由CFRP管控制,DSTC长柱在加载后期侧向挠度发展迅速,CFRP管对受压区混凝土施加了更大的约束作用。此外,CFRP管断裂时组合柱的承载力急剧下降。


图9 DSTC柱典型的全过程曲线

图10 DSTC柱的应力分布和发展


基于上述典型算例研究了影响DSTC长柱轴压性能的主要参数(如图11)。结果表明,在设计DSTC长柱时优先考虑CFRP管的相关参数,它们对柱的轴压性能有明显的影响,还需要控制长细比在适当范围内,而混凝土和钢管的参数对DSTC长柱轴压性能的影响较小。



图11 各种参数对DSTC长柱N-μ曲线的影响



四、理论分析

利用本文试验和相关研究中环向缠绕的数据,验证已有两种典型的DSTC短柱轴压承载力的计算方法,结果表明这两种方法对于核心加载下DSTC短柱的轴压极限承载力均具有较高的精度(如图12)。此外,本文拟合了一个新的长细比λ-稳定系数φ关系表达式,通过验证可知该λ-φ关系可以较为准确的预测DSTC长柱在核心加载下的极限承载力(如图13)。


图12 DSTC短柱极限承载力计算公式的验证

图11 各种参数对DSTC长柱N-μ曲线的影响



五、结论

1







DSTC组合柱的破坏形态和CFRP管的缠绕方向相关,缠绕方向为90°约束下混凝土的破坏程度最小,而45°和0°方向的CFRP管约束混凝土的破坏程度较为严重。

2






 随着碳纤维管厚度的增加,试件的极限承载力和延性均提高;随着空心率的增加,试件的极限承载力降低,而延性增大;CFRP的纤维环向缠绕时,试件的极限承载力和延性更好;随着长细比的增大,试件的极限承载力降低

3






CFRP管厚度、CFRP管环向弹性模量以及长细比是影响DSTC长柱在轴压荷载下极限承载力和跨中挠度的主要因素。相比之下,混凝土的强度、钢管的强度和厚度变化对极限承载力和跨中挠度的影响较小。

4






 余涛和王娟的模型可以较准确的预测核心加载下DSTC短柱的轴压极限承载力。此外,提出了一个新的考虑长细比影响的稳定系数,可用于预测核心加载下DSTC长柱的轴压极限承载力。



六、相关文献


[1] Fan JH, Wang WD, Shi YL, Zheng L. Low-cycle fatigue behaviour of concrete-filled double skin steel tubular (CFDST) members for wind turbine towers. Thin-Walled Structures, 2024, 205: 112384.
[2] Shi YL, Ren JX, Fan JH, Wang WD, Wang HC. Bonding-slip behaviour of steel-concrete interfaces in CFDST members with PBL ribs. Engineering Structures, 2024, 314: 118384.
[3] Duan LX, Wang WD, Zheng L, Shi YL. Dynamic response analysis of monopile CFDST wind turbine tower system under wind-wave-seismic coupling action. Thin-Walled Structures, 2024, 202: 112089.
[4] Hong ZT, Wang WD, Zheng L, Shi YL. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.
[5] Fan JH, Wang WD, Shi YL, Ji SH. Torsional behaviour of tapered CFDST members with large void ratio. Journal of Building Engineering, 2022, 52: 104434.
[6] Shi YL, Ji SH, Wang WD, Xian W, Fan JH. Axial compressive behaviour of tapered CFDST stub columns with large void ratio. Journal of Constructional Steel Research, 2022, 191: 107206.
[7] Duan LX, Wang WD, Xian W, Shi YL. Shear response of circular-in-square CFDST members: Experimental investigation and finite element analysis. Journal of Constructional Steel Research, 2022, 190: 107160.
[8] 史艳莉,纪孙航,王文达,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.
[9] Wang WD, Fan JH, Shi YL, Xian W. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending. Journal of Constructional Steel Research, 2021, 182: 106689.
[10] 史艳莉,张超峰,鲜威,王文达.圆锥形中空夹层钢管混凝土偏压构件受力性能研究.建筑结构学报,2021,42(5): 155-164+176.

 作者简介



王博:男,甘肃人,硕士研究生。主要从事钢与混凝土组合结构静力性能研究。


2022.09-2025.06,兰州理工大学土木工程专业,硕士研究生(导师:史艳莉教授,王文达教授)





郑龙:男,辽宁人,讲师。主要从事钢与混凝土组合结构的抗震、抗连续倒塌及抗冲击性能研究。2023年甘肃省优秀博士毕业论文获得者。


2016.09-2019.06,兰州理工大学 土木工程学院 结构工程专业,硕士研究生(导师:王文达教授、史艳莉教授)

2019.09-2022.12,兰州理工大学 土木工程学院 结构工程专业,博士研究生(导师:王文达教授、史艳莉教授
2023.01-,兰州理工大学 土木工程学院,讲师,硕导







       相关研究

           (可点击进入)











Part.1

组合结构连续性倒塌

1.组合结构连续性倒塌:次边柱失效下钢管混凝土组合框架抗连续性倒塌性能

2.组合结构连续性倒塌:钢管混凝土柱-组合梁节点抗连续性倒塌性能

3.组合结构连续性倒塌:简化多尺度模型在组合框架连续倒塌研究中的应用

4.组合结构连续性倒塌:装配式钢管混凝土柱-组合梁节点抗连续性倒塌性能

5.组合结构抗连续倒塌:钢管混凝土组合框架-装配式拉伸钢支撑结构抗连续倒塌性能研究

6.组合结构抗连续倒塌:全填充墙钢管混凝土组合框架抗连续倒塌性能研究

7.组合结构抗连续倒塌:冲击荷载下钢管混凝土柱-组合梁节点的抗连续倒塌性能研究

8.组合结构抗连续倒塌:钢管混凝土框架-RC剪力墙结构抗连续倒塌试验研究

9.组合结构抗连续倒塌:基于简化多尺度模型的钢管混凝土空间框架抗连续倒塌性能研究

10.组合结构抗连续倒塌:钢管混凝土框架-填充墙结构抗倒塌机制与加固策略

Part.2

组合结构全寿命周期性能

1.组合结构全寿命周期性能:钢管初应力对内配型钢圆钢管混凝土受压构件力学性能影响

2.组合结构全寿命周期性能:施工初应力对内配型钢圆钢管混凝土压弯构件力学性能影响

3.组合结构全寿命周期性能:方套圆中空夹层钢管混凝土构件剪切性能 

4.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——短柱轴压性能

5.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——偏压性能

6.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——纯弯性能

7.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压弯构件滞回性能

8.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压扭性能

9.组合结构全寿命周期性能:长期荷载作用下内配型钢方钢管混凝土力学性能研究

10.组合结构全寿命周期性能:双钢管混凝土长柱轴压和偏压性能研究

11.组合结构全寿命周期性能:内配型钢钢管混凝土压弯构件在单调及往复荷载下的受力性能
12.组合结构全寿命周期性能:钢管初应力和长期荷载共同作用下内配型钢圆钢管混凝土受压性能研究
13.组合结构全寿命周期性能:考虑钢管初应力的内配型钢钢管混凝土柱徐变性能研究
14.组合结构全寿命周期性能:基于机器学习的圆中空夹层钢管混凝土柱轴压承载力预测
15.组合结构全寿命周期性能:双钢管混凝土构件滞回性能试验与分析
16.组合结构全寿命周期性能:考虑长期荷载和钢管初应力作用下内配型钢钢管混凝土短柱的力学性能
17.组合结构全寿命周期性能:火灾后内配型钢钢管混凝土柱中型钢-混凝土界面性能研究

Part.3

混合结构抗震性能

1.混合结构抗震性能:钢管混凝土伸臂桁架-核心筒体剪力墙空间节点抗震性能试验研究

Part.4

组合结构撞击性能

1.组合结构撞击性能:火灾下方钢管混凝土柱侧向撞击性能研究

2.组合结构撞击性能:火灾后内配型钢钢管混凝土柱侧向撞击和撞后性能研究

3.组合结构撞击性能:火灾后钢管混凝土构件侧向撞击性能试验和数值研究

4.组合结构撞击性能:火灾后内配型钢钢管混凝土构件侧向撞击性能试验研究
5.组合结构撞击性能:受火后内配型钢方钢管混凝土构件抗侧向撞击性能试验研究

Part.5

组合结构抗火性能

1.组合结构抗火性能:震损后方钢管混凝土柱耐火性能试验研究

2.组合结构抗火性能:带防火保护层的内配型钢钢管混凝土柱耐火性能分析

3.组合结构抗火性能:内配型钢钢管混凝土柱耐火性能试验研究

4.组合结构抗火性能:非均匀受火的内配型钢钢管混凝土柱耐火性能分析

5.组合结构抗火:内配型钢钢管混凝土柱在荷载和温度共同作用后的剩余力学性能研究

Part.6

装配式钢筋混凝土结构

1.装配式钢筋混凝土结构:人工可控塑性铰钢节点变形机制研究

2.装配式钢筋混凝土结构:仿生钢铰梁柱节点抗震及修复性能试验研究

Part.7

新型高性能结构材料

1.新型高性能结构材料:高温后碳纳米管增强混凝土的抗冲击性能

Part.8

新型吸能结构

1.新型吸能结构:蜂窝吸能板提升停车结构防撞性能研究

2.新型吸能结构:仿生波纹夹层管耐撞性能研究和多目标优化

Part.9

风电工程结构

1.风电工程结构:单桩式中空夹层钢管混凝土风电塔体系在风-浪-震耦合作用下的动态响应分析

2.风电工程结构:带PBL肋板的中空夹层钢管混凝土界面粘结性能研究

3.风电工程结构:中空夹层钢管混凝土风力发电机塔筒低周疲劳性能研究




课题组主要成果











Part.1

组合结构连续性倒塌

[1]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse mechanism and reinforcement methods of composite frame with CFST columns and infill walls. Journal of Constructional Steel Research, 2023, 208: 108022.

[2]. Wang Wen-Da*, Zheng Long*, Xian Wei. Simplified multi-scale simulation investigation of 3D composite floor substructures under different column-removal scenariosJournal of Constructional Steel Research, 2023,208: 108002.

[3]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse performance of concrete-filled steel tubular composite frame with RC shear walls under middle column removal. Journal of Building Engineering, 2023, 64: 105611.

[4]. Wang Wen-Da*, Zheng Long, Xian Wei. Performance of the CFST column to composite beam connection under static and impact loads. Journal of Constructional Steel Research, 2022,198: 107567.

[5]. 王景玄*,杨永,孙衍浩. 全填充墙钢管混凝土组合框架抗连续倒塌性能研究[J]. 土木工程学报,2022,55(8): 11-13.

[6]. Wang Jing-Xuan, Shen Ya-Jun, Gao Shan*, Wang Wen-Da. Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal. Engineering Structures, 2022, 266: 114635.

[7].Zheng Long, Wang Wen-Da*, Xian Wei. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connection with CFST column and composite beam. Engineering Structures, 2022, 256: 114061.

[8].Zheng Long, Wang Wen-Da*. Multi-scale numerical simulation analysis of CFST column-composite beam frame under a column-loss scenario. Journal of Constructional Steel Research, 2022, 190: 107151.

[9].Zheng Long, Wang Wen-Da*, Li Hua-Wei. Progressive collapse resistance of composite frame with concrete-filled steel tubular column under a penultimate column removal scenario. Journal of Constructional Steel Research, 2022, 189: 107085.

[10].王景玄*,杨永,周侃,李秋颖. 角柱失效下钢管混土柱-组合梁框架抗连续倒塌能力研究. 工程力学,2022,39(5):105-118.

[11].Wang Jiang-Xuan*, Yang Yong, Xian Wei, Li Qiu-Ying. Progressive collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted-welded hybrid connection. International Journal of Steel Structures, 2020, 20(5), 1618-1635.

[12].Wang Wen-Da*, Zheng Long, Li Hua-Wei. Experimental investigation of composite joints with concrete-filled steel tubular column under column removal scenario. Engineering Structures, 2020, 219: 110956.

[13].郑龙,王文达*,李华伟,李天昊.钢管混凝土柱-钢梁穿心螺栓外伸端板式节点抗连续倒塌性能研究.建筑结构学报,2019,40(11): 140-149

[14].Shi Yan-Li, Zheng Long, Wang Wen-Da*. The influence of key component characteristic on the resistance to progressive collapse of composite joint with the concrete-filled steel tubular column and steel beam with through bolt-extended endplate. Frontiers in Materials, 2019, 6: 64.

[15].王文达*,郑龙,魏国强.穿心构造的钢管混凝土柱-钢梁节点抗连续性倒塌性能分析与评估.工程科学与技术,2018,50(6): 39-47.

[16].王景玄,王文达*,李华伟.钢管混凝土平面框架子结构抗连续倒塌精细有限元分析.工程力学,2018,35(6): 105-114.

[17].王景玄,王文达*,李华伟.采用静-动力转换方法的钢管混凝土框架受火倒塌非线性分析.工程科学与技术,2017,49(4): 53-60.

[18].Wang Wen-Da*, Li Hua-Wei, Wang Jing-Xuan. Progressive collapse analysis of concrete-filled steel tubular column to steel beam connections using multi-scale model. Structures, 2017, 9: 123-133.

[19].史艳莉,石晓飞,王文达*,王景玄,李华伟.圆钢管混凝土柱-H钢梁内隔板式节点抗连续倒塌机理研究.振动与冲击,2016,35(19):148-155.

[20].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.

Part.2

组合结构撞击性能

[1].纪孙航,王文达*,赵晖,王蕊,史艳莉.受火后内配型钢方钢管混凝土构件抗侧向撞击性能试验研究.建筑结构学报,2024,45(3):148-159.

[2].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Shi Yan-Li*, Xian Wei. Lateral impact behaviour of post-fire steel-reinforced concrete-filled steel tubular members: Experiment and evaluation methodEngineering Structures2023, 293: 116612.

[3].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Xian Wei, Wang Rui, Shi Yan-Li*Experimental and numerical investigation on the lateral impact responses of CFST members after exposure to fire. Thin-Walled Structures2023, 190: 110968.

[4].Ji Sun-Hang, Wang Wen-Da*, Xian Wei. Impact and post-impact behaviours of steel-reinforced concrete-filled steel tubular columns after exposure to fire. Structures, 2022, 44: 680-697.
[5].Ji Sun-Hang, Wang Wen-Da*, Xian Wei. Lateral impact behaviour of square CFST columns under fire condition. Journal of Constructional Steel Research, 2022, 196: 107367.
[6].王文达*,陈振幅,纪孙航.长期持荷工况下钢管混凝土构件的抗撞击性能研究.爆炸与冲击,2021,41(8): 083106.
[7].纪孙航,王文达*,鲜威.CFRP加固火灾作用后圆钢管混凝土构件的侧向撞击性能研究.工程力学,2021,38(8): 178-191.
[8].纪孙航,史艳莉,王文达*.火灾作用后钢管混凝土构件侧向撞击性能研究.振动与冲击,2021,40(4): 179-187.

[9].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*. Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular (SRCFST) members subjected to lateral impact. Thin-Walled Structures, 2021, 160: 107409.

[10].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*, Wang Rui. Investigation on the lateral impact responses of circular concrete-filled double-tube (CFDT) members. Composite Structures, 2021, 255: 112993.

[11].Xian Wei, Wang Wen-Da*, Wang Rui, Chen Wen-Su, Hao Hong. Dynamic response of steel-reinforced concrete-filled circular steel tubular members under lateral impact loads. Thin-Walled Structures, 2020, 151: 106736.

[12].史艳莉,纪孙航,王文达*,郑龙.高温作用下钢管混凝土构件侧向撞击性能研究.爆炸与冲击,2020,40(4): 043303.

[13].史艳莉,鲜威,王蕊,王文达*.方套圆中空夹层钢管混凝土组合构件横向撞击试验研究.土木工程学报,2019,52(12): 11-21.

[14].史艳莉,何佳星,王文达*,鲜威,王蕊.内配圆钢管的圆钢管混凝土构件耐撞性能分析.振动与冲击,2019,38(9): 123-132.

Part.3

组合结构抗火

[1].Wang Wen-Da*Mao Wen-Jing, Zhou Kan. Experimental investigation on residual capacity of steel-reinforced concrete-filled thin-walled steel tubular columns subjected to combined loading and temperature. Thin-Walled Structures, 2024, 197: 111557.

[2].Mao Wen-Jing, Zhou Kan, Wang Wen-Da*. Investigation on fire resistance of steel-reinforced concrete-filled stell tubular columns subjected to non-unform fire. Engineering structures, 2023, 280: 115653.

[3].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan. Fire performance on steel-reinforced concrete-filled steel tubular columns with fire protection. Journal of Constructional Steel Research, 2022, 199: 107580.

[4].魏国强,王文达*,毛文婧.震损后方钢管混凝土柱耐火性能试验研究.建筑结构学报,2022,43(12):123-134.

[5].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan, Du Er-Feng. Experimental study on steel-reinforced concrete-filled steel tubular columns under the fire. Journal of Constructional Steel Research, 2021, 185: 106867.

[6].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85,DOI: 10.6052/j.issn.1000-4750.2020.05.0259

[7].Mao Wen-Jing, Wang Wen-Da*, Xian Wei. Numerical analysis on fire performance of steel-reinforced concrete-filled steel tubular columns with square cross-section. Structures, 2020, 28: 1-16.

[8].Xu Lei*, Wang Ming-Tao, Bao Yan-Hong, Wang Wen-Da. Numerical analysis on structural behaviors of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to 3-side fire. International Journal of Steel Structures, 2017, 17(4): 1515-1528.

[9].Bao Yan-Hong, Xu Lei*, Wang Wen-Da, Sun Jian-Gang. Numerical analysis on mechanical property of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to ISO-834 standard fire. International Journal of Steel Structures, 2017, 17(4): 1561-1581.

[10].王景玄,王文达*.考虑火灾全过程的钢管混凝土柱-组合梁平面框架受力性能分析.振动与冲击,2014, 33(11): 124-129+135.

[11].王景玄,王文达*.不同火灾工况下钢梁-钢管混凝土柱平面框架受火全过程分析.建筑结构学报,2014,35(3): 102-109.

Part.4

组合结构抗震

[1].Rui Jia, Xian Wei, Wang Wen-Da*, Zhu Yan-Peng, Wang Jing-Xuan. Experimental study on seismic behaviour of the outrigger truss-core wall spatial joints with peripheral CFST columns. Structures, 2022, 41: 1014-1026.

[2].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.

[3].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85.

[4].王凤,王文达*,史艳莉.钢管混凝土框架柱计算长度研究.工程力学,2015,32(1): 168-175.

[5].王文达*,魏国强,李华伟.钢管混凝土框架-RC剪力墙混合结构滞回性能分析.振动与冲击,2013, 32(15): 45-50.

[6].王文达*,史艳莉,文天鹏.钢框架平端板连接组合节点弯矩-转角关系.振动与冲击,2013,32(10):43-49+68.

[7].史艳莉,王文达,靳垚.考虑墙体作用的低层冷弯薄壁型钢轻型房屋住宅体系弹塑性动力分析.工程力学,2012,29(12): 186-195.

[8].Han Lin-Hai, Wang Wen-Da, Tao Zhong. Performance of circular CFST column-to-steel beam frames under lateral cyclic loading. Journal of Constructional Steel Research, 2011, 67(5): 876-890.

[9].曲慧,王文达.钢管混凝土梁柱连接节点弯矩-转角关系实用计算方法研究.工程力学,2010,27(5): 106-114.

[10].王文达,韩林海.钢管混凝土柱-钢梁平面框架的滞回关系.清华大学学报(自然科学版),2009,49(12): 1934-1938.

[11].王文达,韩林海.钢管混凝土框架力学性能的简化二阶弹塑性分析.清华大学学报(自然科学版),2009,49(9): 1455-1458.

[12].Wang Wen-Da, Han Lin-Hai, Zhao Xiao-Ling. Analytical behavior of frames with steel beam to concrete-filled steel tubular column. Journal of Constructional Steel Research, 2009, 65(3): 497-508.

[13].王文达,韩林海.钢管混凝土框架力学性能的非线性有限元分析.建筑结构学报,2008,29(6): 75-83.

[14].王文达,韩林海.钢管混凝土框架实用荷载-位移恢复力模型研究.工程力学,2008,25(11): 62-69.

[15].Wang Wen-Da, Han Lin-Hai, Uy Brian. Experimental behaviour of steel reduced beam section (RBS) to concrete- filled CHS column connections. Journal of Constructional Steel Research, 2008, 64(5): 493-504.

[16].Han Lin-Hai, Wang Wen-Da, Zhao Xiao-Ling. Behaviour of steel beam to concrete-filled SHS column frames: Finite element model and verifications. Engineering Structures, 2008, 30(6): 1647-1658.

[17].王文达,韩林海,游经团.方钢管混凝土柱-钢梁外加强环节点滞回性能的实验研究,土木工程学报,2006,39(9):17-25.

[18].王文达,韩林海,陶忠.钢管混凝土柱-钢梁平面框架抗震性能的试验研究.建筑结构学报,2006,27(3):48-58.

Part.5

组合结构全寿命周期性能

[1].Wang B, Shi YL, Zheng L, Wang WD. Axial compressive behavior of hybrid CFRP-concrete-steel double-skin tubular columns. Journal of Constructional Steel Research, 2024, 223: 109056.

[2].Wang WD, Ma W, Ji SH, Shi YL. Investigation on post-fire bond behavior between section steel and concrete in SRCFST columns. Structures, 2024, 69: 107384.

[3].Wu Xiao-Ming, Shi Yan-Li*, Zheng Long, Wang Wen-Da*. Performance of rectangular SRCFST stub columns under long-term loading and preload on steel tubeStructures, 2024, 61: 106110.

[4].王文达,陈亚明,纪孙航,史艳莉.双钢管混凝土构件滞回性能试验与分析[J].建筑结构学报,2023,45(1):128-138.

[5].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.

[6].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Zheng Long. Numerical studies on creep behaviour of SRCFST columns with initial stress of steel tube. Journal of Constructional Steel Research, 2023, 201: 108214.

[7].Wang Wen-Da*, Jia Zhi-Lu, Xian Wei, Shi Yan-Li. Performance of SRCFST member under long-term loading and preload on steel tube. Journal of Building Engineering, 2023, 73: 106700.

[8].Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Shi Yan-Li*. Cyclic and monotonic behaviour of steel-reinforced concrete-filled steel tubular columns. Thin-Walled Structures, 2023, 185: 110644.

[9].Wang Wen-Da*, Ji Sun-Hang, Shi Yan-Li. Experimental and numerical investigations on concrete-filled double-tubular slender columns under axial and eccentric loading. Journal of Constructional Steel Research, 2023, 201: 107714.

[10].Jia Zhi-Lu, Wang Wen-Da*, Shi Yan-Li, Xian Wei. Performance of steel-reinforced concrete-filled square steel tubular members under sustained axial compression loading. Engineering Structures, 2022, 263: 114464.

[11].贾志路,史艳莉,王文达*,鲜威.钢管初应力对内配型钢的圆钢管混凝土柱受压性能影响.建筑结构学报,2022,43(6): 63-74.

[12].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Xian Wei. Compression-bending behaviour of steel-reinforced concrete-filled circular steel tubular columns with preload. Structures, 2022, 36: 892-911.

[13].Jia Zhi-Lu, Shi Yan-Li, Xian Wei, Wang Wen-Da*. Torsional behaviour of concrete-filled circular steel tubular members under coupled compression and torsion. Structures. 2021, 34: 931-946.

[14].王文达*,纪孙航,史艳莉,张宸.内配型钢方钢管混凝土构件压弯剪性能研究.土木工程学报,2021,54(1): 76-87.

[15].Shi Yan-Li, Jia Zhi-Lu, Wang Wen-Da*, Xian Wei, Tan Ee Loon. Experimental and numerical study on torsional behaviour of steel-reinforced concrete-filled square steel tubular members. Structures, 2021, 32: 713-730.

[16].Wang Wen-Da*, Ji Sun-Hang, Xian Wei, Shi Yan-Li. Experimental and numerical investigations of steel-reinforced concrete-filled steel tubular members under compression-bending-shear loads. Journal of Constructional Steel Research, 2021, 181: 106609.

[17].Wang Wen-Da*, Xian Wei, Hou Chao, Shi Yan-Li. Experimental investigation and FE modelling of the flexural performance of square and rectangular SRCFST members. Structures, 2020, 27: 2411-2425.

[18].Wang Wen-Da*, Jia Zhi-Lu, Shi Yan-Li, Tan Ee Loon. Performance of steel-reinforced circular concrete-filled steel tubular members under combined compression and torsion. Journal of Constructional Steel Research, 2020, 173: 106271.

[19].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Mechanical behaviour of circular steel-reinforced concrete-filled steel tubular members under pure bending loads. Structures, 2020, 25: 8-23.

[20].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Experimental performance of circular concrete-filled steel tubular members with inner profiled steel under lateral shear load. Engineering Structures, 2019, 201: 109746.

[21].史艳莉*,周绪红,鲜威,王文达.无端板矩形钢管混凝土构件基本剪切性能研究.工程力学,2018,35(12): 25-33.

[22].王文达,于清.混凝土浇筑过程中方钢管柱的力学性能.清华大学学报(自然科学版),2013,53(1):6-11.

Part.6

中空夹层钢管混凝土结构

[1].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.

[2].Fan Jia-Hao, Wang Wen-Da*, Shi Yan-Li, Ji Sun-Hang. Torsional behaviour of tapered CFDST members with large void ratio. Journal of Building Engineering, 2022, 52: 104434.

[3].Shi Yan-Li, Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Fan Jia-Hao. Axial compressive behaviour of tapered CFDST stub columns with large void ratio. Journal of Constructional Steel Research, 2022, 191: 107206.

[4].Duan Li-Xin, Wang Wen-Da*, Xian Wei, Shi Yan-Li. Shear response of circular-in-square CFDST members: Experimental investigation and finite element analysis. Journal of Constructional Steel Research, 2022, 190: 107160.

[5].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.

[6].Wang Wen-Da*, Fan Jia-Hao, Shi Yan-Li, Xian Wei. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending. Journal of Constructional Steel Research, 2021, 182: 106689.

[7].史艳莉,张超峰,鲜威,王文达*.圆锥形中空夹层钢管混凝土偏压构件受力性能研究.建筑结构学报,2021,42(5): 155-164+176.

Part.7

纤维模型与子程序开发等

[1].Tao Zhong*, Katwal Utsab, Uy Brian, Wang Wen-Da. Simplified nonlinear simulation of rectangular concrete-filled steel tubular columns. ASCE Journal of Structural Engineering, 2021, 147(6): 04021061.

[2].Shi Yan-Li*, Li Hua-Wei, Wang Wen-Da, Hou Chao. A fiber model based on secondary development of ABAQUS for elastic-plastic analysis. International Journal of Steel Structures, 2018, 18(5): 1560-1576.

[3].Katwal Utsab, Tao Zhong*, Hassan Md Kamrul, Wang Wen-Da. Simplified numerical modeling of axially loaded circular concrete-filled steel stub columns. ASCE Journal of Structural Engineering, 2017, 143(12): 04017169.

[4].王文达*,魏国强.基于纤维模型的型钢混凝土组合剪力墙滞回性能分析.振动与冲击,2015,35(6):30-35.

[5].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.

[6].王文达*,杨全全,李华伟.基于分层壳单元与纤维梁单元组合剪力墙滞回性能分析.振动与冲击,2014, 33(16):142-149.

[7].李华伟,王文达*.ABAQUS二次开发在钢管混凝土结构有限元分析中的应用.建筑结构学报,2013,34(s1):353-358.

Part.8

装配式钢筋混凝土结构

[1].Yuan YJ, An AH, Wang WD, Shi YL, He ZH. Experimental research on the seismic and repair performance of steel beam-column joint with replaceable bio-inspired hinge. Journal of Constructional Steel Research, 2024, 223: 109032.

[2].Yuan Yu-Jie, Wang Wen-Da*, Huang Hua. Deformation mechanism of steel artificial controllable plastic hinge in prefabricate frame. Journal of Constructional Steel Reserarch, 2023, 201: 107735.

Part.9

新型高性能结构材料

[1].Gao Fang-Fang, Tian Wei, Wang Wen-Da*. Residual impact resistance behavior of concrete containing carbon nanotubes after exposure to high temperatures. Construction and Building Materials, 2023, 366: 130183. 

Part.10

新型吸能结构

[1].Zheng Long, Li Fu-Qi, Wang Wen-Da*, Shi Yan-Li*. Bionic corrugated sandwich cylindrical tubes subjected to transverse impact. Structures, 2024, 64: 106599.

[2].Zheng Long, Li Fu-Qi, Wang Wen-Da*. A honeycomb panel-based protective device for steel parking structure against transverse impact. Journal of Constructional Steel Research, 2023, 211: 108203.

Part.11

风电工程结构

[1].Fan Jia-Hao, Wang Wen-Da, Shi Yan-Li, Zheng Long. Low-cycle fatigue behaviour of concrete-filled double skin steel tubular (CFDST) members for wind turbine towers. Thin-Walled Structures2024205: 112384.

[2].Shi Yan-Li, Ren Jia-Xing, Fan Jia-Hao, Wang Wen-Da, Wang Hai-Cui*. Bonding-slip behaviour of steel-concrete interfaces in CFDST members with PBL ribs. Engineering Structures, 2024, 314: 118384.

[3].Duan Li-Xin, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Dynamic response analysis of monopile CFDST wind turbine tower system under wind-wave-seismic coupling action. Thin-Walled Structures, 2024, 202: 112089.






编辑:郑   龙

审核:王文达


+

+

王文达课题组

微信号|wangwd_group

兰州理工大学土木工程学院王文达课题组


点击蓝字 阅读原文

+

王文达课题组
兰州理工大学土木工程学院王文达教授课题组公众号,主要进行钢与混凝土组合结构混合结构、钢结构及结构抗火研究、工程技术咨询等。
 最新文章