引用格式:
Zheng L, Li FQ, Wang WD. A honeycomb panel-based protective device for steel parking structure against transverse impact. Journal of Constructional Steel Research, 2023, 211: 108203.
Highlights:
1.
A honeycomb panel-based (HP) protective device for steel parking structures is
proposed.
2. A simplified multi-scale simulation considering reasonable material and boundary is employed.
3. A vertical residual resistance of substructure after transverse impact is innovatively simulated.
4. The HP protective device with a reasonable design can present a noticeable protective effect.
论文信息:
论文链接:https://www.sciencedirect.com/science/article/abs/pii/S0143974X23004303?via%3Dihub
DOI: 10.1016/j.jcsr.2023.108203
一、研究背景
随着城市基础设施的快速发展和汽车保有量的显著增加,汽车撞击建筑物的概率不断增加。据统计,美国此类事故的发生频率为每天60余次,典型事故如图1所示。与住宅和其他公共建筑的柱子相比,城市停车结构(如图2a所示)的柱子发生车辆碰撞的风险更高,严重时还可能发生连续性倒塌。为减小此类事故对停车结构造成的潜在威胁,本文提出一种基于蜂窝吸能板(HP)的防护装置,初步探索了其对停车结构防撞性能的提升作用。
图1 汽车撞击停车结构典型事故
二、数值建模策略
采用简化多尺度模拟方法(详见:简化多尺度模型在组合框架连续倒塌研究中的应用;基于简化多尺度模型的钢管混凝土空间框架抗连续倒塌性能研究)对停车结构防撞性能进行建模,选取空间钢框架子结构作为研究对象,对撞击直接影响区的钢柱进行精细化实体单元建模,其他区域采用简化的梁单元建模,并基于线性连接单元设置合理的边界条件。撞击体采用简化的汽车保险杠模型,蜂窝吸能板放置在保险杠和钢柱之间。设定撞击质量为1.66t(参考NHTSA测试,选取丰田凯美瑞汽车参数进行模拟;后续可采用质量更大的电动汽车模型),撞击速度为10、20、30km/h,拟定蜂窝吸能板(HP防护装置)的吸能效率分别为30%、20%、10%进行尺寸设计。模型信息如图2所示。
图2 停车结构防撞性能简化多尺度模型
三、有无HP防护装置效果对比
图3给出了有无蜂窝吸能板的停车结构柱变形模式对比。不难看出,HP防护装置对停车结构的防撞效果提升明显:车速为10 km/h时,撞击后柱几乎无损伤;车速为20 km/h时,HP防护装置削弱了结构柱的变形和破坏;车速为30 km/h时,HP防护装置防止了柱的断裂。
图3 有无HP防护装置的停车结构柱变形模式对比
如图4所示,HP防护装置对冲击力和侧向位移时程曲线的影响显著。当冲击时间小于10 ms时,原型结构出现1-2个曲线波峰,考虑HP防护装置后则无此现象。并且,HP防护装置降低最大冲击力1.2-34.4%,降低撞击点的侧向位移36.1%以上。
通过图5可以看出,与原型结构相比,安装HP装置后框架内能分别减少了79.7%、42.2%、22.4%。另外,有无HP防护装置的框架内能之比随着速度的增加而降低,这意味着HP防护装置能更有效地抵御低速撞击。
图4 冲击力和侧向位移时程曲线
图5 内能时程曲线
在受到不同车速车辆撞击后,停车结构柱将受到不同程度的损坏,且随着初始损伤的加重,结构连续倒塌风险也随之增加。如图2b所示,为评估车辆撞击后停车结构的倒塌风险,采用经典的连续倒塌工况(C2柱顶施加竖向荷载)进行加载。柱的剩余竖向承载力-位移曲线如图6所示,将拆柱和不拆柱工况下的子结构竖向抗力也记录于图中。随着冲击速度的增大,柱的剩余竖向承载力减小,停车结构倒塌风险增大。安装HP防护装置后,冲击后结构柱的剩余竖向承载力分别提高了36.3%、69.6%、197.8%。有趣的是,随着冲击速度的增加,尽管HP防护装置对柱的侧向位移和吸能比的贡献降低,但对降低结构倒塌风险更加有效。
图6 连续倒塌工况下柱的剩余竖向承载力
四、HP防护装置参数分析
本节讨论了HP防护装置关键参数对停车结构防撞性能的影响,包括蜂窝单元厚度与边长之比t/l、HP防护装置的厚度t和长度l、蜂窝类型,对比的关键性能指标包括最大侧向位移、峰值冲击力、HP防护装置内能和倒塌工况下柱最大剩余竖向承载力。下面以蜂窝类型为例进行展示:
如图7所示,对比了六边形、方形、圆形、凹六边形和三角形5种蜂窝类型,选取相同的相对密度进行变量控制。对比结果如图8所示,不难发现,当冲击速度为10 km/h时,其他四种蜂窝性能略高于六边形蜂窝。当冲击速度大于10 km/h时,方形蜂窝的性能与六边形相差不超过15%;而圆形、凹六边形和三角形蜂窝的性能均低于六边形蜂窝。综上,六边形蜂窝防护装置的综合性能最优。
图7 不同蜂窝类型
图8 不同蜂窝类型的性能指标
五、结论
Conclusions
1
蜂窝吸能板(HP)防护装置对停车结构具有显著的防护作用,特别是防止了30 km/h冲击速度下钢柱的断裂。
2
在冲击速度为10-30 km/h时,HP防护装置使峰值冲击力降低1.2-34.4%,侧向位移降低36.1-80.3%,框架内能降低22.4-79.7%。
3
随着冲击速度的增加,停车结构连续倒塌风险增大。HP防护装置使停车结构柱在撞击后的剩余竖向承载力提高36.3-197.8%。
4
参数分析发现,合理的蜂窝板尺寸对HP防护装置的吸能效果和防护能力至关重要。与其他蜂窝类型相比,六边形蜂窝综合防护性能最优。
六、相关文献
作者简介
郑龙:男,辽宁人,讲师。主要从事钢与混凝土组合结构抗连续倒塌性能及抗冲击性能研究。
2016.09-2019.06,兰州理工大学土木工程学院结构工程专业,硕士研究生(导师:王文达教授、史艳莉教授)
李富奇:男,江西人,硕士研究生。主要从事新型吸能结构研究。
2022.09-,兰州理工大学土木工程学院结构工程专业,硕士研究生(导师:王文达教授、郑龙)
相关研究
Part.1
组合结构连续性倒塌
1.组合结构连续性倒塌:次边柱失效下钢管混凝土组合框架抗连续性倒塌性能
2.组合结构连续性倒塌:钢管混凝土柱-组合梁节点抗连续性倒塌性能
3.组合结构连续性倒塌:简化多尺度模型在组合框架连续倒塌研究中的应用
4.组合结构连续性倒塌:装配式钢管混凝土柱-组合梁节点抗连续性倒塌性能
5.组合结构抗连续倒塌:钢管混凝土组合框架-装配式拉伸钢支撑结构抗连续倒塌性能研究
6.组合结构抗连续倒塌:全填充墙钢管混凝土组合框架抗连续倒塌性能研究
7.组合结构抗连续倒塌:冲击荷载下钢管混凝土柱-组合梁节点的抗连续倒塌性能研究
8.组合结构抗连续倒塌:钢管混凝土框架-RC剪力墙结构抗连续倒塌试验研究
Part.2
组合结构全寿命周期性能
1.组合结构全寿命周期性能:钢管初应力对内配型钢圆钢管混凝土受压构件力学性能影响
2.组合结构全寿命周期性能:施工初应力对内配型钢圆钢管混凝土压弯构件力学性能影响
3.组合结构全寿命周期性能:方套圆中空夹层钢管混凝土构件剪切性能
4.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——短柱轴压性能
5.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——偏压性能
6.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——纯弯性能
7.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压弯构件滞回性能
8.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压扭性能
9.组合结构全寿命周期性能:长期荷载作用下内配型钢方钢管混凝土力学性能研究
11.组合结构全寿命周期性能:内配型钢钢管混凝土压弯构件在单调及往复荷载下的受力性能
Part.3
混合结构抗震性能
Part.4
组合结构撞击性能
2.组合结构撞击性能:火灾后内配型钢钢管混凝土柱侧向撞击和撞后性能研究
3.组合结构撞击性能:火灾后钢管混凝土构件侧向撞击性能试验和数值研究
4.组合结构撞击性能:火灾后内配型钢钢管混凝土构件侧向撞击性能试验研究Part.5
组合结构抗火性能
Part.6
装配式钢筋混凝土结构
Part.7
新型高性能结构材料
课题组主要成果
Part.1
组合结构连续性倒塌
[1]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse mechanism and reinforcement methods of composite frame with CFST columns and infill walls. Journal of Constructional Steel Research, 2023, 208: 108022.
[2]. Wang Wen-Da*, Zheng Long*, Xian Wei. Simplified multi-scale simulation investigation of 3D composite floor substructures under different column-removal scenarios. Journal of Constructional Steel Research, 2023,208: 108002.
[3]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse performance of concrete-filled steel tubular composite frame with RC shear walls under middle column removal. Journal of Building Engineering, 2023, 64: 105611.
[4]. Wang Wen-Da*, Zheng Long, Xian Wei. Performance of the CFST column to composite beam connection under static and impact loads. Journal of Constructional Steel Research, 2022,198: 107567.
[5]. 王景玄*,杨永,孙衍浩. 全填充墙钢管混凝土组合框架抗连续倒塌性能研究[J]. 土木工程学报,2022,55(8): 11-13.
[6]. Wang Jing-Xuan, Shen Ya-Jun, Gao Shan*, Wang Wen-Da. Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal. Engineering Structures, 2022, 266: 114635.
[7].Zheng Long, Wang Wen-Da*, Xian Wei. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connection with CFST column and composite beam. Engineering Structures, 2022, 256: 114061.
[8].Zheng Long, Wang Wen-Da*. Multi-scale numerical simulation analysis of CFST column-composite beam frame under a column-loss scenario. Journal of Constructional Steel Research, 2022, 190: 107151.
[9].Zheng Long, Wang Wen-Da*, Li Hua-Wei. Progressive collapse resistance of composite frame with concrete-filled steel tubular column under a penultimate column removal scenario. Journal of Constructional Steel Research, 2022, 189: 107085.
[10].王景玄*,杨永,周侃,李秋颖. 角柱失效下钢管混土柱-组合梁框架抗连续倒塌能力研究. 工程力学,2022,39(5):105-118.
[11].Wang Jiang-Xuan*, Yang Yong, Xian Wei, Li Qiu-Ying. Progressive collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted-welded hybrid connection. International Journal of Steel Structures, 2020, 20(5), 1618-1635.
[12].Wang Wen-Da*, Zheng Long, Li Hua-Wei. Experimental investigation of composite joints with concrete-filled steel tubular column under column removal scenario. Engineering Structures, 2020, 219: 110956.
[13].郑龙,王文达*,李华伟,李天昊.钢管混凝土柱-钢梁穿心螺栓外伸端板式节点抗连续倒塌性能研究.建筑结构学报,2019,40(11): 140-149
[14].Shi Yan-Li, Zheng Long, Wang Wen-Da*. The influence of key component characteristic on the resistance to progressive collapse of composite joint with the concrete-filled steel tubular column and steel beam with through bolt-extended endplate. Frontiers in Materials, 2019, 6: 64.
[15].王文达*,郑龙,魏国强.穿心构造的钢管混凝土柱-钢梁节点抗连续性倒塌性能分析与评估.工程科学与技术,2018,50(6): 39-47.
[16].王景玄,王文达*,李华伟.钢管混凝土平面框架子结构抗连续倒塌精细有限元分析.工程力学,2018,35(6): 105-114.
[17].王景玄,王文达*,李华伟.采用静-动力转换方法的钢管混凝土框架受火倒塌非线性分析.工程科学与技术,2017,49(4): 53-60.
[18].Wang Wen-Da*, Li Hua-Wei, Wang Jing-Xuan. Progressive collapse analysis of concrete-filled steel tubular column to steel beam connections using multi-scale model. Structures, 2017, 9: 123-133.
[19].史艳莉,石晓飞,王文达*,王景玄,李华伟.圆钢管混凝土柱-H钢梁内隔板式节点抗连续倒塌机理研究.振动与冲击,2016,35(19):148-155.
[20].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.
Part.2
组合结构撞击性能
[1].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Shi Yan-Li*, Xian Wei. Lateral impact behaviour of post-fire steel-reinforced concrete-filled steel tubular members: Experiment and evaluation method. Engineering Structures, 2023, 293: 116612.
[2].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Xian Wei, Wang Rui, Shi Yan-Li*. Experimental and numerical investigation on the lateral impact responses of CFST members after exposure to fire. Thin-Walled Structures, 2023, 190: 110968.
[8].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*. Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular (SRCFST) members subjected to lateral impact. Thin-Walled Structures, 2021, 160: 107409.
[9].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*, Wang Rui. Investigation on the lateral impact responses of circular concrete-filled double-tube (CFDT) members. Composite Structures, 2021, 255: 112993.
[10].Xian Wei, Wang Wen-Da*, Wang Rui, Chen Wen-Su, Hao Hong. Dynamic response of steel-reinforced concrete-filled circular steel tubular members under lateral impact loads. Thin-Walled Structures, 2020, 151: 106736.
[11].史艳莉,纪孙航,王文达*,郑龙.高温作用下钢管混凝土构件侧向撞击性能研究.爆炸与冲击,2020,40(4): 043303.
[12].史艳莉,鲜威,王蕊,王文达*.方套圆中空夹层钢管混凝土组合构件横向撞击试验研究.土木工程学报,2019,52(12): 11-21.
[13].史艳莉,何佳星,王文达*,鲜威,王蕊.内配圆钢管的圆钢管混凝土构件耐撞性能分析.振动与冲击,2019,38(9): 123-132.
Part.3
组合结构抗火
[1].Mao Wen-Jing, Zhou Kan, Wang Wen-Da*. Investigation on fire resistance of steel-reinforced concrete-filled stell tubular columns subjected to non-unform fire. Engineering structures, 2023, 280: 115653.
[2].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan. Fire performance on steel-reinforced concrete-filled steel tubular columns with fire protection. Journal of Constructional Steel Research, 2022, 199: 107580.
[3].魏国强,王文达*,毛文婧.震损后方钢管混凝土柱耐火性能试验研究.建筑结构学报,2022,43(12):123-134.
[4].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan, Du Er-Feng. Experimental study on steel-reinforced concrete-filled steel tubular columns under the fire. Journal of Constructional Steel Research, 2021, 185: 106867.
[5].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85,DOI: 10.6052/j.issn.1000-4750.2020.05.0259
[6].Mao Wen-Jing, Wang Wen-Da*, Xian Wei. Numerical analysis on fire performance of steel-reinforced concrete-filled steel tubular columns with square cross-section. Structures, 2020, 28: 1-16.
[7].Xu Lei*, Wang Ming-Tao, Bao Yan-Hong, Wang Wen-Da. Numerical analysis on structural behaviors of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to 3-side fire. International Journal of Steel Structures, 2017, 17(4): 1515-1528.
[8].Bao Yan-Hong, Xu Lei*, Wang Wen-Da, Sun Jian-Gang. Numerical analysis on mechanical property of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to ISO-834 standard fire. International Journal of Steel Structures, 2017, 17(4): 1561-1581.
[9].王景玄,王文达*.考虑火灾全过程的钢管混凝土柱-组合梁平面框架受力性能分析.振动与冲击,2014, 33(11): 124-129+135.
[10].王景玄,王文达*.不同火灾工况下钢梁-钢管混凝土柱平面框架受火全过程分析.建筑结构学报,2014,35(3): 102-109.
Part.4
组合结构抗震
[1].Rui Jia, Xian Wei, Wang Wen-Da*, Zhu Yan-Peng, Wang Jing-Xuan. Experimental study on seismic behaviour of the outrigger truss-core wall spatial joints with peripheral CFST columns. Structures, 2022, 41: 1014-1026.
[2].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.
[3].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85.
[4].王凤,王文达*,史艳莉.钢管混凝土框架柱计算长度研究.工程力学,2015,32(1): 168-175.
[5].王文达*,魏国强,李华伟.钢管混凝土框架-RC剪力墙混合结构滞回性能分析.振动与冲击,2013, 32(15): 45-50.
[6].王文达*,史艳莉,文天鹏.钢框架平端板连接组合节点弯矩-转角关系.振动与冲击,2013,32(10):43-49+68.
[7].史艳莉,王文达,靳垚.考虑墙体作用的低层冷弯薄壁型钢轻型房屋住宅体系弹塑性动力分析.工程力学,2012,29(12): 186-195.
[8].Han Lin-Hai, Wang Wen-Da, Tao Zhong. Performance of circular CFST column-to-steel beam frames under lateral cyclic loading. Journal of Constructional Steel Research, 2011, 67(5): 876-890.
[9].曲慧,王文达.钢管混凝土梁柱连接节点弯矩-转角关系实用计算方法研究.工程力学,2010,27(5): 106-114.
[10].王文达,韩林海.钢管混凝土柱-钢梁平面框架的滞回关系.清华大学学报(自然科学版),2009,49(12): 1934-1938.
[11].王文达,韩林海.钢管混凝土框架力学性能的简化二阶弹塑性分析.清华大学学报(自然科学版),2009,49(9): 1455-1458.
[12].Wang Wen-Da, Han Lin-Hai, Zhao Xiao-Ling. Analytical behavior of frames with steel beam to concrete-filled steel tubular column. Journal of Constructional Steel Research, 2009, 65(3): 497-508.
[13].王文达,韩林海.钢管混凝土框架力学性能的非线性有限元分析.建筑结构学报,2008,29(6): 75-83.
[14].王文达,韩林海.钢管混凝土框架实用荷载-位移恢复力模型研究.工程力学,2008,25(11): 62-69.
[15].Wang Wen-Da, Han Lin-Hai, Uy Brian. Experimental behaviour of steel reduced beam section (RBS) to concrete- filled CHS column connections. Journal of Constructional Steel Research, 2008, 64(5): 493-504.
[16].Han Lin-Hai, Wang Wen-Da, Zhao Xiao-Ling. Behaviour of steel beam to concrete-filled SHS column frames: Finite element model and verifications. Engineering Structures, 2008, 30(6): 1647-1658.
[17].王文达,韩林海,游经团.方钢管混凝土柱-钢梁外加强环节点滞回性能的实验研究,土木工程学报,2006,39(9):17-25.
[18].王文达,韩林海,陶忠.钢管混凝土柱-钢梁平面框架抗震性能的试验研究.建筑结构学报,2006,27(3):48-58.
Part.5
组合结构全寿命周期性能
[1].Wang Wen-Da*, Jia Zhi-Lu, Xian Wei, Shi Yan-Li. Performance of SRCFST member under long-term loading and preload on steel tube. Journal of Building Engineering, 2023, 73: 106700.
[2].Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Shi Yan-Li*. Cyclic and monotonic behaviour of steel-reinforced concrete-filled steel tubular columns. Thin-Walled Structures, 2023, 185: 110644.
[3].Wang Wen-Da*, Ji Sun-Hang, Shi Yan-Li. Experimental and numerical investigations on concrete-filled double-tubular slender columns under axial and eccentric loading. Journal of Constructional Steel Research, 2023, 201: 107714.
[4].Jia Zhi-Lu, Wang Wen-Da*, Shi Yan-Li, Xian Wei. Performance of steel-reinforced concrete-filled square steel tubular members under sustained axial compression loading. Engineering Structures, 2022, 263: 114464.
[5].贾志路,史艳莉,王文达*,鲜威.钢管初应力对内配型钢的圆钢管混凝土柱受压性能影响.建筑结构学报,2022,43(6): 63-74.
[6].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Xian Wei. Compression-bending behaviour of steel-reinforced concrete-filled circular steel tubular columns with preload. Structures, 2022, 36: 892-911.
[7].Jia Zhi-Lu, Shi Yan-Li, Xian Wei, Wang Wen-Da*. Torsional behaviour of concrete-filled circular steel tubular members under coupled compression and torsion. Structures. 2021, 34: 931-946.
[8].王文达*,纪孙航,史艳莉,张宸.内配型钢方钢管混凝土构件压弯剪性能研究.土木工程学报,2021,54(1): 76-87.
[9].Shi Yan-Li, Jia Zhi-Lu, Wang Wen-Da*, Xian Wei, Tan Ee Loon. Experimental and numerical study on torsional behaviour of steel-reinforced concrete-filled square steel tubular members. Structures, 2021, 32: 713-730.
[10].Wang Wen-Da*, Ji Sun-Hang, Xian Wei, Shi Yan-Li. Experimental and numerical investigations of steel-reinforced concrete-filled steel tubular members under compression-bending-shear loads. Journal of Constructional Steel Research, 2021, 181: 106609.
[11].Wang Wen-Da*, Xian Wei, Hou Chao, Shi Yan-Li. Experimental investigation and FE modelling of the flexural performance of square and rectangular SRCFST members. Structures, 2020, 27: 2411-2425.
[12].Wang Wen-Da*, Jia Zhi-Lu, Shi Yan-Li, Tan Ee Loon. Performance of steel-reinforced circular concrete-filled steel tubular members under combined compression and torsion. Journal of Constructional Steel Research, 2020, 173: 106271.
[13].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Mechanical behaviour of circular steel-reinforced concrete-filled steel tubular members under pure bending loads. Structures, 2020, 25: 8-23.
[14].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Experimental performance of circular concrete-filled steel tubular members with inner profiled steel under lateral shear load. Engineering Structures, 2019, 201: 109746.
[15].史艳莉*,周绪红,鲜威,王文达.无端板矩形钢管混凝土构件基本剪切性能研究.工程力学,2018,35(12): 25-33.
[16].王文达,于清.混凝土浇筑过程中方钢管柱的力学性能.清华大学学报(自然科学版),2013,53(1):6-11.
Part.6
中空夹层钢管混凝土结构
[1].Fan Jia-Hao, Wang Wen-Da*, Shi Yan-Li, Ji Sun-Hang. Torsional behaviour of tapered CFDST members with large void ratio. Journal of Building Engineering, 2022, 52: 104434.
[2].Shi Yan-Li, Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Fan Jia-Hao. Axial compressive behaviour of tapered CFDST stub columns with large void ratio. Journal of Constructional Steel Research, 2022, 191: 107206.
[3].Duan Li-Xin, Wang Wen-Da*, Xian Wei, Shi Yan-Li. Shear response of circular-in-square CFDST members: Experimental investigation and finite element analysis. Journal of Constructional Steel Research, 2022, 190: 107160.
[4].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.
[5].Wang Wen-Da*, Fan Jia-Hao, Shi Yan-Li, Xian Wei. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending. Journal of Constructional Steel Research, 2021, 182: 106689.
[6].史艳莉,张超峰,鲜威,王文达*.圆锥形中空夹层钢管混凝土偏压构件受力性能研究.建筑结构学报,2021,42(5): 155-164+176.
Part.7
纤维模型与子程序开发等
[1].Tao Zhong*, Katwal Utsab, Uy Brian, Wang Wen-Da. Simplified nonlinear simulation of rectangular concrete-filled steel tubular columns. ASCE Journal of Structural Engineering, 2021, 147(6): 04021061.
[2].Shi Yan-Li*, Li Hua-Wei, Wang Wen-Da, Hou Chao. A fiber model based on secondary development of ABAQUS for elastic-plastic analysis. International Journal of Steel Structures, 2018, 18(5): 1560-1576.
[3].Katwal Utsab, Tao Zhong*, Hassan Md Kamrul, Wang Wen-Da. Simplified numerical modeling of axially loaded circular concrete-filled steel stub columns. ASCE Journal of Structural Engineering, 2017, 143(12): 04017169.
[4].王文达*,魏国强.基于纤维模型的型钢混凝土组合剪力墙滞回性能分析.振动与冲击,2015,35(6):30-35.
[5].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.
[6].王文达*,杨全全,李华伟.基于分层壳单元与纤维梁单元组合剪力墙滞回性能分析.振动与冲击,2014, 33(16):142-149.
[7].李华伟,王文达*.ABAQUS二次开发在钢管混凝土结构有限元分析中的应用.建筑结构学报,2013,34(s1):353-358.
Part.8
装配式钢筋混凝土结构
[1].Yuan Yu-Jie, Wang Wen-Da*, Huang Hua. Deformation mechanism of steel artificial controllable plastic hinge in prefabricate frame. Journal of Constructional Steel Reserarch, 2023, 201: 107735.
Part.9
新型高性能结构材料
[1].Gao Fang-Fang, Tian Wei, Wang Wen-Da*. Residual impact resistance behavior of concrete containing carbon nanotubes after exposure to high temperatures. Construction and Building Materials, 2023, 366: 130183.
Part.10
新型吸能结构
[1].Zheng Long, Li Fu-Qi, Wang Wen-Da*. A honeycomb panel-based protective device for steel parking structure against transverse impact. Journal of Constructional Steel Research, 2023, 211: 108203.
编辑:郑 龙
审核:王文达
✦+
+
王文达课题组
微信号|wangwd_group
兰州理工大学土木工程学院王文达课题组
点击蓝字 阅读原文
+