组合结构全寿命周期性能:考虑长期荷载和钢管初应力作用下内配型钢钢管混凝土短柱的力学性能

文摘   科学   2024-03-14 22:20   甘肃  



引用格式:

Wu XM, Shi YL, Zheng L, Wang WD. Performance of rectangular SRCFST stub columns under long-term loading and preload on steel tube. Structures, 2024, 61: 106110.


Highlights:

1. The long-term mechanical performance of SRCFST stub columns was tested.

2. The preload ratio and long-term sustained load ratio were considered for a 1200-days loading test.

3. The load-displacement curve and failure mode were analyzed after the load-bearing capacity test.

4. A numerical model was established to analyze the internal force redistribution.

论文信息:

论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2352012424002625

论文50天免费下载链接(2024421)https://authors.elsevier.com/c/1ihdP8MoIH2Zn1

DOI:10.1016/j.istruc.2024.106110


一、研究背景

随着建筑结构向更为复杂的受力方向发展,传统钢管混凝土柱无法满足日益增长的使用需求。因此,为满足结构安全性和施工要求,内配型钢钢管混凝土(Steel-reinforced concrete-filled steel tubular,以下简称SRCFST)柱作为一种新型组合构件应运而生。内置型钢的存在能够有效防止核心混凝土剪切裂缝的快速扩展。此外,SRCFST柱相对于传统钢管混凝土柱具有强度高、抗火性能好、抗震性能好以及相同轴压承载力下,占用空间较小等优点,在建筑结构和桥梁结构中有很好的应用前景。在结构全寿命周期的建造阶段,由于施工工艺的限制,多层和高层建筑通常先安装空心钢管,然后安装梁,并进行楼板施工。因此,钢管在提供竖向支撑作用的同时,容易受到沿纵向的初压应力(以下简称钢管初应力)的影响。在使用阶段,承重柱通常具有较长的使用周期,并且总是受到长期荷载的影响。因此,有必要深入研究SRCFST构件在初应力和长期荷载作用下的力学性能。然后,从正常建筑施工到正式投入使用的过程,文献中仅发现非常有限的关于SRCFST柱在初应力以及长期荷载组合作用下的力学性能研究。为此,本文通过试验研究矩形截面SRCFST试件,分析了纵向应变、应变增量及增率曲线、荷载-变形曲线、荷载-应变曲线以及破坏模态的影响。并通过有限元模拟,分析了主要参数对持荷阶段的内力重分布以及承载力试验中各部件承担荷载的影响规律。


二、试验设计

为了研究内配工字型钢矩形截面钢管混凝土(SRCFST)轴压短柱,在全寿命过程中的建造阶段钢管承受初始应力,使用阶段全截面承受长期轴向荷载作用对其力学性能的影响。共设计了7SRCFST试件进行了1200d的持荷试验,随后对7根试件进行了轴心受压承载力试验研究。试验中以初应力系数(β=00.30.6)和长期荷载比(n=0.30.6)为主要试验参数,研究三种典型作用工况(Case 1、不考虑初始应力及长期荷载(长期对比试件);Case 2仅考虑长期荷载;和Case 3考虑初始应力及长期荷载组合作用。)下持续荷载阶段徐变以及徐变后构件的力学性能。不同阶段的加载及监测装置如图1~4所示。



三、试验结果与讨论


SRCFST试件进行了1200d的徐变监测,结果如图567所示。如图5所示,通过对比分析发现,在β相同时,随着n0.3增加至0.6,初始应变值呈现逐渐增大的趋势;而n相同时,随着β0增加至0.6,初始应变值则逐渐减小,且随着n的增大,初始应变值减小的趋势得到了抑制。



如图6所示,保持β不变,随着n增加,对于仅考虑长期荷载作用的试件而言应变增量显著上升,然而应变增率基本保持一致;对于受两种荷载组合作用的试件,应变增量、增率均随之增加。如图7所示,保持n不变,随着β增加,纵向应变增量减小,而应变增率却逐渐增加。



随后对7根试件进行了轴心受压承载力试验研究,结果如图89所示。如图8所示,结果表明:由于钢管初始缺陷和混凝土微裂缝的随机分布,导致试验中破坏位置可能发生在柱高的任意位置。从破坏形态可以看出,组合荷载的施加使得破坏形态更具有规律性。因此,是否考虑组合荷载的作用对构件发生破坏的位置有明显影响,对破坏模态并未造成显著差异。



如图9所示,结果表明:相对于工况1中试件的极限承载力,工况2中的构件最大增加3.1%,工况3中的构件最大增加13.4%。这一结果表明,工况3中考虑两种荷载组合作用下的试件,极限承载力增大更加显著。



四、有限元分析


考虑组合两种荷载时,SRCFST构件的有限元模拟主要分为两个阶段进行。如图10和表1所示,在第一阶段,由于仅钢管承受初始荷载作用,因此在Step1中采用“Model change”先“杀死”混凝土及型钢。在Step 2中,施加长期荷载前再使用“Model change”来“激活”混凝土及型钢。右端板在整个全寿命过程中始终进行全截面约束。左端板在第一阶段中施加集中荷载,第二阶段施加位移荷载。当第一阶段计算完成后,将其结果通过“Edit predefined filed”导入到第二阶段的计算中,修改混凝土的本构关系,开始第二阶段的计算




11所示,结果表明:持续荷载阶段的应变变化可以分为三个阶段。前期为0~100,应变发展迅速且最终达到应变峰值的95%~98%;中期为100~160,发展缓慢并达到应变峰值;后期为160~1200天,发展略有波动,但变化并不明显,并逐渐趋于平稳。



如图12所示,结果表明:荷载施加结束后,在持续荷载阶段,因为混凝土发生徐变,混凝土承担的荷载不断减小,钢管和型钢所承担的荷载继续增加,但构件整体所受荷载维持稳定。该过程构件R-A1R-A2R-P1-A1R-P1-A2中混凝土荷载分别降低了33%33%33%32%,由此可以看出,随着βn的变化,对于混凝土在徐变过程中的荷载损失率并无明显影响。并得出如图13所示的典型荷载-应变曲线。



如图14所示,无论是仅考虑长期荷载或考虑两种荷载组合作用的情况下,均是钢管及型钢先屈服达到其所承担的极限荷载,随着位移荷载的继续施加混凝土继续受力,当混凝土被压溃的同时,试件整体屈服达到极限荷载。在受压过程中,混凝土为主要承力部件。





五、结论

Conclusions

1






持续荷载阶段的应变变化可以分为三个阶段。前期为0~100,应变发展迅速且最终达到应变峰值的95%~98%;中期为100~160,发展缓慢并达到应变峰值;后期为160~1200天,发展略有波动,但变化并不明显,并逐渐趋于平稳。

2






对比分析发现,在β相同时,随着n0.3增加至0.6,初始应变值呈现逐渐增大的趋势;而在n相同时,随着β0增加至0.6,初始应变值则逐渐减小,且随着n的增大,初始应变值减小的趋势得到了抑制。

3






相对于工况1中试件的极限承载力,工况2中的构件最大增加3.1%,工况3中的构件最大增加13.4%

4






参数βn的变化对混凝土徐变过程中荷载损失率没有显著影响,但对持续荷载阶段钢管承受的荷载有明显的影响。



六、相关文献


[1] Jia ZL, Shi YL, Wang WD*, Zheng L. Numerical studies on creep behaviour of SRCFST columns with initial stress of steel tube. Journal of Constructional Steel Research, 2023, 211: 108214.
[2] Wang WD*, Jia ZL, Xian W, Shi YL*. Performance of SRCFST member under long-term loading and preload on steel tube. Journal of Building Engineering, 2023, 73: 106700.
[3] Jia ZL, Wang WD*, Shi YL, Xian W. Performance of steel-reinforced concrete-filled square steel tubular members under sustained axial compression loading. Engineering Structures, 2022, 264: 114464.
[4] Jia ZL, Shi YL, Wang WD*, Ji SH. Compression-bending behaviour of steel-reinforced concrete-filled circular steel tubular columns with preload. Structures, 2022, 36: 892-911.
[5] Jia ZL, Shi YL, Wang WD*, Xian W. Torsional behaviour of concrete-filled circular steel tubular members under coupled compression and torsion. Structures, 2021, 34: 931-946.
[6] Shi YL, Jia ZL, Wang WD*, Xian W, Tan EL. Experimental and numerical study on torsional behaviour of steel-reinforced concrete-filled square steel tubular members. Structures, 2021, 32: 713-730.
[7] Wang WD*, Jia ZL, Shi YL, Tan EL. Performance of steel-reinforced circular concrete-filled steel tubular members under combined compression and torsion. Journal of Constructional Steel Research, 2020, 173: 106271.
[8] 贾志路,史艳莉,王文达*,鲜威. 钢管初应力对内配型钢的圆钢管混凝土柱受压性能影响. 建筑结构学报,2022,43(6):63-74.
[9] 贾志路,史艳莉,王文达*. 施工初应力与长期荷载作用下内配型钢的方钢管混凝土轴压柱受力性能研究. 建筑结构学报,2019,40(S1):141-148.

 作者简介


吴晓明:男,甘肃人,硕士研究生。主要从事钢与混凝土组合结构静力性能研究。

2021.09-,兰州理工大学 土木工程学院 结构工程专业,硕士研究生 (导师:史艳莉教授、王文达教授)




郑龙:男,辽宁人,讲师。主要从事钢与混凝土组合结构、装配式结构的抗震、抗连续倒塌及抗冲击性能研究。2023年甘肃省优秀博士毕业论文获得者。

2016.09-2019.06,兰州理工大学 土木工程学院 结构工程专业,硕士研究生(导师:王文达教授、史艳莉教授)

2019.09-2022.12,兰州理工大学 土木工程学院 结构工程专业,博士研究生(导师:王文达教授、史艳莉教授
2023.01-,兰州理工大学 土木工程学院,讲师





       相关研究

           (可点击进入)











Part.1

组合结构连续性倒塌

1.组合结构连续性倒塌:次边柱失效下钢管混凝土组合框架抗连续性倒塌性能

2.组合结构连续性倒塌:钢管混凝土柱-组合梁节点抗连续性倒塌性能

3.组合结构连续性倒塌:简化多尺度模型在组合框架连续倒塌研究中的应用

4.组合结构连续性倒塌:装配式钢管混凝土柱-组合梁节点抗连续性倒塌性能

5.组合结构抗连续倒塌:钢管混凝土组合框架-装配式拉伸钢支撑结构抗连续倒塌性能研究

6.组合结构抗连续倒塌:全填充墙钢管混凝土组合框架抗连续倒塌性能研究

7.组合结构抗连续倒塌:冲击荷载下钢管混凝土柱-组合梁节点的抗连续倒塌性能研究

8.组合结构抗连续倒塌:钢管混凝土框架-RC剪力墙结构抗连续倒塌试验研究

9.组合结构抗连续倒塌:基于简化多尺度模型的钢管混凝土空间框架抗连续倒塌性能研究

10.组合结构抗连续倒塌:钢管混凝土框架-填充墙结构抗倒塌机制与加固策略

Part.2

组合结构全寿命周期性能

1.组合结构全寿命周期性能:钢管初应力对内配型钢圆钢管混凝土受压构件力学性能影响

2.组合结构全寿命周期性能:施工初应力对内配型钢圆钢管混凝土压弯构件力学性能影响

3.组合结构全寿命周期性能:方套圆中空夹层钢管混凝土构件剪切性能 

4.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——短柱轴压性能

5.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——偏压性能

6.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——纯弯性能

7.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压弯构件滞回性能

8.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压扭性能

9.组合结构全寿命周期性能:长期荷载作用下内配型钢方钢管混凝土力学性能研究

10.组合结构全寿命周期性能:双钢管混凝土长柱轴压和偏压性能研究

11.组合结构全寿命周期性能:内配型钢钢管混凝土压弯构件在单调及往复荷载下的受力性能
12.组合结构全寿命周期性能:钢管初应力和长期荷载共同作用下内配型钢圆钢管混凝土受压性能研究
13.组合结构全寿命周期性能:考虑钢管初应力的内配型钢钢管混凝土柱徐变性能研究
14.组合结构全寿命周期性能:基于机器学习的圆中空夹层钢管混凝土柱轴压承载力预测
15.组合结构全寿命周期性能:双钢管混凝土构件滞回性能试验与分析

Part.3

混合结构抗震性能

1.混合结构抗震性能:钢管混凝土伸臂桁架-核心筒体剪力墙空间节点抗震性能试验研究


Part.4

组合结构撞击性能

1.组合结构撞击性能:火灾下方钢管混凝土柱侧向撞击性能研究

2.组合结构撞击性能:火灾后内配型钢钢管混凝土柱侧向撞击和撞后性能研究

3.组合结构撞击性能:火灾后钢管混凝土构件侧向撞击性能试验和数值研究

4.组合结构撞击性能:火灾后内配型钢钢管混凝土构件侧向撞击性能试验研究
5.组合结构撞击性能:受火后内配型钢方钢管混凝土构件抗侧向撞击性能试验研究

Part.5

组合结构抗火性能

1.组合结构抗火性能:震损后方钢管混凝土柱耐火性能试验研究

2.组合结构抗火性能:带防火保护层的内配型钢钢管混凝土柱耐火性能分析

3.组合结构抗火性能:内配型钢钢管混凝土柱耐火性能试验研究

4.组合结构抗火性能:非均匀受火的内配型钢钢管混凝土柱耐火性能分析

5.组合结构抗火:内配型钢钢管混凝土柱在荷载和温度共同作用后的剩余力学性能研究

Part.6

装配式钢筋混凝土结构

1.装配式钢筋混凝土结构:人工可控塑性铰钢节点变形机制研究

Part.7

新型高性能结构材料

1.新型高性能结构材料:高温后碳纳米管增强混凝土的抗冲击性能

Part.8

新型吸能结构

1.新型吸能结构:蜂窝吸能板提升停车结构防撞性能研究


课题组主要成果











Part.1

组合结构连续性倒塌

[1]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse mechanism and reinforcement methods of composite frame with CFST columns and infill walls. Journal of Constructional Steel Research, 2023, 208: 108022.

[2]. Wang Wen-Da*, Zheng Long*, Xian Wei. Simplified multi-scale simulation investigation of 3D composite floor substructures under different column-removal scenariosJournal of Constructional Steel Research, 2023,208: 108002.

[3]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse performance of concrete-filled steel tubular composite frame with RC shear walls under middle column removal. Journal of Building Engineering, 2023, 64: 105611.

[4]. Wang Wen-Da*, Zheng Long, Xian Wei. Performance of the CFST column to composite beam connection under static and impact loads. Journal of Constructional Steel Research, 2022,198: 107567.

[5]. 王景玄*,杨永,孙衍浩. 全填充墙钢管混凝土组合框架抗连续倒塌性能研究[J]. 土木工程学报,2022,55(8): 11-13.

[6]. Wang Jing-Xuan, Shen Ya-Jun, Gao Shan*, Wang Wen-Da. Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal. Engineering Structures, 2022, 266: 114635.

[7].Zheng Long, Wang Wen-Da*, Xian Wei. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connection with CFST column and composite beam. Engineering Structures, 2022, 256: 114061.

[8].Zheng Long, Wang Wen-Da*. Multi-scale numerical simulation analysis of CFST column-composite beam frame under a column-loss scenario. Journal of Constructional Steel Research, 2022, 190: 107151.

[9].Zheng Long, Wang Wen-Da*, Li Hua-Wei. Progressive collapse resistance of composite frame with concrete-filled steel tubular column under a penultimate column removal scenario. Journal of Constructional Steel Research, 2022, 189: 107085.

[10].王景玄*,杨永,周侃,李秋颖. 角柱失效下钢管混土柱-组合梁框架抗连续倒塌能力研究. 工程力学,2022,39(5):105-118.

[11].Wang Jiang-Xuan*, Yang Yong, Xian Wei, Li Qiu-Ying. Progressive collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted-welded hybrid connection. International Journal of Steel Structures, 2020, 20(5), 1618-1635.

[12].Wang Wen-Da*, Zheng Long, Li Hua-Wei. Experimental investigation of composite joints with concrete-filled steel tubular column under column removal scenario. Engineering Structures, 2020, 219: 110956.

[13].郑龙,王文达*,李华伟,李天昊.钢管混凝土柱-钢梁穿心螺栓外伸端板式节点抗连续倒塌性能研究.建筑结构学报,2019,40(11): 140-149

[14].Shi Yan-Li, Zheng Long, Wang Wen-Da*. The influence of key component characteristic on the resistance to progressive collapse of composite joint with the concrete-filled steel tubular column and steel beam with through bolt-extended endplate. Frontiers in Materials, 2019, 6: 64.

[15].王文达*,郑龙,魏国强.穿心构造的钢管混凝土柱-钢梁节点抗连续性倒塌性能分析与评估.工程科学与技术,2018,50(6): 39-47.

[16].王景玄,王文达*,李华伟.钢管混凝土平面框架子结构抗连续倒塌精细有限元分析.工程力学,2018,35(6): 105-114.

[17].王景玄,王文达*,李华伟.采用静-动力转换方法的钢管混凝土框架受火倒塌非线性分析.工程科学与技术,2017,49(4): 53-60.

[18].Wang Wen-Da*, Li Hua-Wei, Wang Jing-Xuan. Progressive collapse analysis of concrete-filled steel tubular column to steel beam connections using multi-scale model. Structures, 2017, 9: 123-133.

[19].史艳莉,石晓飞,王文达*,王景玄,李华伟.圆钢管混凝土柱-H钢梁内隔板式节点抗连续倒塌机理研究.振动与冲击,2016,35(19):148-155.

[20].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.

Part.2

组合结构撞击性能

[1].纪孙航,王文达*,赵晖,王蕊,史艳莉.受火后内配型钢方钢管混凝土构件抗侧向撞击性能试验研究.建筑结构学报,2024,45(3):148-159.

[2].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Shi Yan-Li*, Xian Wei. Lateral impact behaviour of post-fire steel-reinforced concrete-filled steel tubular members: Experiment and evaluation methodEngineering Structures2023, 293: 116612.

[3].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Xian Wei, Wang Rui, Shi Yan-Li*Experimental and numerical investigation on the lateral impact responses of CFST members after exposure to fire. Thin-Walled Structures2023, 190: 110968.

[4].Ji Sun-Hang, Wang Wen-Da*, Xian Wei. Impact and post-impact behaviours of steel-reinforced concrete-filled steel tubular columns after exposure to fire. Structures, 2022, 44: 680-697.
[5].Ji Sun-Hang, Wang Wen-Da*, Xian Wei. Lateral impact behaviour of square CFST columns under fire condition. Journal of Constructional Steel Research, 2022, 196: 107367.
[6].王文达*,陈振幅,纪孙航.长期持荷工况下钢管混凝土构件的抗撞击性能研究.爆炸与冲击,2021,41(8): 083106.
[7].纪孙航,王文达*,鲜威.CFRP加固火灾作用后圆钢管混凝土构件的侧向撞击性能研究.工程力学,2021,38(8): 178-191.
[8].纪孙航,史艳莉,王文达*.火灾作用后钢管混凝土构件侧向撞击性能研究.振动与冲击,2021,40(4): 179-187.

[9].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*. Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular (SRCFST) members subjected to lateral impact. Thin-Walled Structures, 2021, 160: 107409.

[10].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*, Wang Rui. Investigation on the lateral impact responses of circular concrete-filled double-tube (CFDT) members. Composite Structures, 2021, 255: 112993.

[11].Xian Wei, Wang Wen-Da*, Wang Rui, Chen Wen-Su, Hao Hong. Dynamic response of steel-reinforced concrete-filled circular steel tubular members under lateral impact loads. Thin-Walled Structures, 2020, 151: 106736.

[12].史艳莉,纪孙航,王文达*,郑龙.高温作用下钢管混凝土构件侧向撞击性能研究.爆炸与冲击,2020,40(4): 043303.

[13].史艳莉,鲜威,王蕊,王文达*.方套圆中空夹层钢管混凝土组合构件横向撞击试验研究.土木工程学报,2019,52(12): 11-21.

[14].史艳莉,何佳星,王文达*,鲜威,王蕊.内配圆钢管的圆钢管混凝土构件耐撞性能分析.振动与冲击,2019,38(9): 123-132.

Part.3

组合结构抗火

[1].Wang Wen-Da*Mao Wen-Jing, Zhou Kan. Experimental investigation on residual capacity of steel-reinforced concrete-filled thin-walled steel tubular columns subjected to combined loading and temperature. Thin-Walled Structures, 2024, 197: 111557.

[2].Mao Wen-Jing, Zhou Kan, Wang Wen-Da*. Investigation on fire resistance of steel-reinforced concrete-filled stell tubular columns subjected to non-unform fire. Engineering structures, 2023, 280: 115653.

[3].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan. Fire performance on steel-reinforced concrete-filled steel tubular columns with fire protection. Journal of Constructional Steel Research, 2022, 199: 107580.

[4].魏国强,王文达*,毛文婧.震损后方钢管混凝土柱耐火性能试验研究.建筑结构学报,2022,43(12):123-134.

[5].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan, Du Er-Feng. Experimental study on steel-reinforced concrete-filled steel tubular columns under the fire. Journal of Constructional Steel Research, 2021, 185: 106867.

[6].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85,DOI: 10.6052/j.issn.1000-4750.2020.05.0259

[7].Mao Wen-Jing, Wang Wen-Da*, Xian Wei. Numerical analysis on fire performance of steel-reinforced concrete-filled steel tubular columns with square cross-section. Structures, 2020, 28: 1-16.

[8].Xu Lei*, Wang Ming-Tao, Bao Yan-Hong, Wang Wen-Da. Numerical analysis on structural behaviors of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to 3-side fire. International Journal of Steel Structures, 2017, 17(4): 1515-1528.

[9].Bao Yan-Hong, Xu Lei*, Wang Wen-Da, Sun Jian-Gang. Numerical analysis on mechanical property of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to ISO-834 standard fire. International Journal of Steel Structures, 2017, 17(4): 1561-1581.

[10].王景玄,王文达*.考虑火灾全过程的钢管混凝土柱-组合梁平面框架受力性能分析.振动与冲击,2014, 33(11): 124-129+135.

[11].王景玄,王文达*.不同火灾工况下钢梁-钢管混凝土柱平面框架受火全过程分析.建筑结构学报,2014,35(3): 102-109.

Part.4

组合结构抗震

[1].Rui Jia, Xian Wei, Wang Wen-Da*, Zhu Yan-Peng, Wang Jing-Xuan. Experimental study on seismic behaviour of the outrigger truss-core wall spatial joints with peripheral CFST columns. Structures, 2022, 41: 1014-1026.

[2].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.

[3].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85.

[4].王凤,王文达*,史艳莉.钢管混凝土框架柱计算长度研究.工程力学,2015,32(1): 168-175.

[5].王文达*,魏国强,李华伟.钢管混凝土框架-RC剪力墙混合结构滞回性能分析.振动与冲击,2013, 32(15): 45-50.

[6].王文达*,史艳莉,文天鹏.钢框架平端板连接组合节点弯矩-转角关系.振动与冲击,2013,32(10):43-49+68.

[7].史艳莉,王文达,靳垚.考虑墙体作用的低层冷弯薄壁型钢轻型房屋住宅体系弹塑性动力分析.工程力学,2012,29(12): 186-195.

[8].Han Lin-Hai, Wang Wen-Da, Tao Zhong. Performance of circular CFST column-to-steel beam frames under lateral cyclic loading. Journal of Constructional Steel Research, 2011, 67(5): 876-890.

[9].曲慧,王文达.钢管混凝土梁柱连接节点弯矩-转角关系实用计算方法研究.工程力学,2010,27(5): 106-114.

[10].王文达,韩林海.钢管混凝土柱-钢梁平面框架的滞回关系.清华大学学报(自然科学版),2009,49(12): 1934-1938.

[11].王文达,韩林海.钢管混凝土框架力学性能的简化二阶弹塑性分析.清华大学学报(自然科学版),2009,49(9): 1455-1458.

[12].Wang Wen-Da, Han Lin-Hai, Zhao Xiao-Ling. Analytical behavior of frames with steel beam to concrete-filled steel tubular column. Journal of Constructional Steel Research, 2009, 65(3): 497-508.

[13].王文达,韩林海.钢管混凝土框架力学性能的非线性有限元分析.建筑结构学报,2008,29(6): 75-83.

[14].王文达,韩林海.钢管混凝土框架实用荷载-位移恢复力模型研究.工程力学,2008,25(11): 62-69.

[15].Wang Wen-Da, Han Lin-Hai, Uy Brian. Experimental behaviour of steel reduced beam section (RBS) to concrete- filled CHS column connections. Journal of Constructional Steel Research, 2008, 64(5): 493-504.

[16].Han Lin-Hai, Wang Wen-Da, Zhao Xiao-Ling. Behaviour of steel beam to concrete-filled SHS column frames: Finite element model and verifications. Engineering Structures, 2008, 30(6): 1647-1658.

[17].王文达,韩林海,游经团.方钢管混凝土柱-钢梁外加强环节点滞回性能的实验研究,土木工程学报,2006,39(9):17-25.

[18].王文达,韩林海,陶忠.钢管混凝土柱-钢梁平面框架抗震性能的试验研究.建筑结构学报,2006,27(3):48-58.

Part.5

组合结构全寿命周期性能

[1].Wu Xiao-Ming, Shi Yan-Li*, Zheng Long, Wang Wen-Da*. Performance of rectangular SRCFST stub columns under long-term loading and preload on steel tubeStructures, 2024, 61: 106110.

[2].王文达,陈亚明,纪孙航,史艳莉.双钢管混凝土构件滞回性能试验与分析[J].建筑结构学报,2023,45(1):128-138.

[3].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.

[4].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Zheng Long. Numerical studies on creep behaviour of SRCFST columns with initial stress of steel tube. Journal of Constructional Steel Research, 2023, 201: 108214.

[5].Wang Wen-Da*, Jia Zhi-Lu, Xian Wei, Shi Yan-Li. Performance of SRCFST member under long-term loading and preload on steel tube. Journal of Building Engineering, 2023, 73: 106700.

[6].Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Shi Yan-Li*. Cyclic and monotonic behaviour of steel-reinforced concrete-filled steel tubular columns. Thin-Walled Structures, 2023, 185: 110644.

[7].Wang Wen-Da*, Ji Sun-Hang, Shi Yan-Li. Experimental and numerical investigations on concrete-filled double-tubular slender columns under axial and eccentric loading. Journal of Constructional Steel Research, 2023, 201: 107714.

[8].Jia Zhi-Lu, Wang Wen-Da*, Shi Yan-Li, Xian Wei. Performance of steel-reinforced concrete-filled square steel tubular members under sustained axial compression loading. Engineering Structures, 2022, 263: 114464.

[9].贾志路,史艳莉,王文达*,鲜威.钢管初应力对内配型钢的圆钢管混凝土柱受压性能影响.建筑结构学报,2022,43(6): 63-74.

[10].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Xian Wei. Compression-bending behaviour of steel-reinforced concrete-filled circular steel tubular columns with preload. Structures, 2022, 36: 892-911.

[11].Jia Zhi-Lu, Shi Yan-Li, Xian Wei, Wang Wen-Da*. Torsional behaviour of concrete-filled circular steel tubular members under coupled compression and torsion. Structures. 2021, 34: 931-946.

[12].王文达*,纪孙航,史艳莉,张宸.内配型钢方钢管混凝土构件压弯剪性能研究.土木工程学报,2021,54(1): 76-87.

[13].Shi Yan-Li, Jia Zhi-Lu, Wang Wen-Da*, Xian Wei, Tan Ee Loon. Experimental and numerical study on torsional behaviour of steel-reinforced concrete-filled square steel tubular members. Structures, 2021, 32: 713-730.

[14].Wang Wen-Da*, Ji Sun-Hang, Xian Wei, Shi Yan-Li. Experimental and numerical investigations of steel-reinforced concrete-filled steel tubular members under compression-bending-shear loads. Journal of Constructional Steel Research, 2021, 181: 106609.

[15].Wang Wen-Da*, Xian Wei, Hou Chao, Shi Yan-Li. Experimental investigation and FE modelling of the flexural performance of square and rectangular SRCFST members. Structures, 2020, 27: 2411-2425.

[16].Wang Wen-Da*, Jia Zhi-Lu, Shi Yan-Li, Tan Ee Loon. Performance of steel-reinforced circular concrete-filled steel tubular members under combined compression and torsion. Journal of Constructional Steel Research, 2020, 173: 106271.

[17].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Mechanical behaviour of circular steel-reinforced concrete-filled steel tubular members under pure bending loads. Structures, 2020, 25: 8-23.

[18].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Experimental performance of circular concrete-filled steel tubular members with inner profiled steel under lateral shear load. Engineering Structures, 2019, 201: 109746.

[19].史艳莉*,周绪红,鲜威,王文达.无端板矩形钢管混凝土构件基本剪切性能研究.工程力学,2018,35(12): 25-33.

[20].王文达,于清.混凝土浇筑过程中方钢管柱的力学性能.清华大学学报(自然科学版),2013,53(1):6-11.

Part.6

中空夹层钢管混凝土结构

[1].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.

[2].Fan Jia-Hao, Wang Wen-Da*, Shi Yan-Li, Ji Sun-Hang. Torsional behaviour of tapered CFDST members with large void ratio. Journal of Building Engineering, 2022, 52: 104434.

[3].Shi Yan-Li, Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Fan Jia-Hao. Axial compressive behaviour of tapered CFDST stub columns with large void ratio. Journal of Constructional Steel Research, 2022, 191: 107206.

[4].Duan Li-Xin, Wang Wen-Da*, Xian Wei, Shi Yan-Li. Shear response of circular-in-square CFDST members: Experimental investigation and finite element analysis. Journal of Constructional Steel Research, 2022, 190: 107160.

[5].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.

[6].Wang Wen-Da*, Fan Jia-Hao, Shi Yan-Li, Xian Wei. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending. Journal of Constructional Steel Research, 2021, 182: 106689.

[7].史艳莉,张超峰,鲜威,王文达*.圆锥形中空夹层钢管混凝土偏压构件受力性能研究.建筑结构学报,2021,42(5): 155-164+176.

Part.7

纤维模型与子程序开发等

[1].Tao Zhong*, Katwal Utsab, Uy Brian, Wang Wen-Da. Simplified nonlinear simulation of rectangular concrete-filled steel tubular columns. ASCE Journal of Structural Engineering, 2021, 147(6): 04021061.

[2].Shi Yan-Li*, Li Hua-Wei, Wang Wen-Da, Hou Chao. A fiber model based on secondary development of ABAQUS for elastic-plastic analysis. International Journal of Steel Structures, 2018, 18(5): 1560-1576.

[3].Katwal Utsab, Tao Zhong*, Hassan Md Kamrul, Wang Wen-Da. Simplified numerical modeling of axially loaded circular concrete-filled steel stub columns. ASCE Journal of Structural Engineering, 2017, 143(12): 04017169.

[4].王文达*,魏国强.基于纤维模型的型钢混凝土组合剪力墙滞回性能分析.振动与冲击,2015,35(6):30-35.

[5].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.

[6].王文达*,杨全全,李华伟.基于分层壳单元与纤维梁单元组合剪力墙滞回性能分析.振动与冲击,2014, 33(16):142-149.

[7].李华伟,王文达*.ABAQUS二次开发在钢管混凝土结构有限元分析中的应用.建筑结构学报,2013,34(s1):353-358.

Part.8

装配式钢筋混凝土结构

[1].Yuan Yu-Jie, Wang Wen-Da*, Huang Hua. Deformation mechanism of steel artificial controllable plastic hinge in prefabricate frame. Journal of Constructional Steel Reserarch, 2023, 201: 107735.

Part.9

新型高性能结构材料

[1].Gao Fang-Fang, Tian Wei, Wang Wen-Da*. Residual impact resistance behavior of concrete containing carbon nanotubes after exposure to high temperatures. Construction and Building Materials, 2023, 366: 130183. 

Part.10

新型吸能结构

[1].Zheng Long, Li Fu-Qi, Wang Wen-Da*. A honeycomb panel-based protective device for steel parking structure against transverse impact. Journal of Constructional Steel Research, 2023, 211: 108203.






编辑:郑   龙

审核:王文达


+

+

王文达课题组

微信号|wangwd_group

兰州理工大学土木工程学院王文达课题组


点击蓝字 阅读原文

+

王文达课题组
兰州理工大学土木工程学院王文达教授课题组公众号,主要进行钢与混凝土组合结构混合结构、钢结构及结构抗火研究、工程技术咨询等。
 最新文章