引用格式:
Zheng L, Li FQ, Wang WD, Shi YL. Bionic
corrugated sandwich cylindrical tubes subjected to transverse impact. Structures,
2024, 64:106599.
Highlights:
1. An innovative bionic corrugated sandwich tube is presented.
2. A comprehensive evaluation of crashworthiness of bionic tubes is carried out.
3. A multi-objective optimized design for critical crashworthiness metrics is given.
论文信息:
论文链接:https://www.sciencedirect.com/science/article/pii/S2352012424007513
论文50天免费下载链接(至2024年7月14日):https://authors.elsevier.com/c/1j91V8MoIH2azP
DOI: 10.1016/j.istruc.2024.106599
一、研究背景
仿生吸能结构是一种通过模仿自然界生物体的结构和机制来设计的结构,与传统结构相比仿生结构在吸能方面有着巨大的优势和潜力。管结构已被广泛应用于各种领域,如海上平台、桥梁、风力发电塔、地下和海底输油管道等。然而,这些结构在实际操作过程中容易受到各种撞击风险的影响,例如船舶碰撞(图1所示)、车辆撞击和锚击。基于此,团队基于雀尾螳螂虾的虾螯微观结构提出一种新型仿生波纹夹层管(CSCT),对其抗横向冲击性能进行讨论,与普通空钢管(CT)进行对比分析,并对关键参数的影响进行分析。最后,通过多目标优化对关键性参数进行了优化分析。
图1 船舶撞击海洋平台
二、仿生结构设计和耐撞撞性评估参数
受虾螯在捕食过程中高速耐冲击的特性启发,基于图2所示雀尾螳螂虾虾螯内部微观结构,在内管和外管之间引入虾螯内部的近似三角形的仿生微单元。构造了一种截面形状如图3所示仿生波纹夹层管。
为了深入研究仿生夹层管的耐撞性,采用能量吸收(EA)、能量吸收比(EAR)、最大冲击力(MIF)、平均碰撞力(MCF)和能量吸收能力(EAC)为关键耐撞性能指标来量化CSCT的耐撞性。
图2 雀尾螳螂虾虾螯内部微观结构
图3 仿生波纹夹层管截面构造
图4 仿生波纹夹层管有限元模型
三、典型试件对比分析
如图5所示,空管的应力集中主要位于受冲击区域的上表面;相反,仿生管在跨中的上下表面都有明显的应力分布。由于夹层管的多层结构,横向冲击下夹层结构的不同层之间可完成力的传播和重分布,从而使上下表面的应力分布相对均匀。
图5 典型试件破坏模式对比
两个典型试件的曲线总体变化趋势相似,在加载前期,CT迅速达到86.3 kN的最大冲击力(MIF)。此后,CT的冲击载荷略有下降并保持稳定。CSCT的冲击载荷在加载前期有多个局部峰值,最终在稳定阶段增至131.5 kN。CSCT在冲击载荷下的持续时间为62.25 ms,明显短于CT,这是由于仿生波纹夹层管具有额外的能量消耗途径,通过塑性变形机理和荷载传递作用快速的耗散能量。CT的最大整体位移为247.2 mm,CSCT的整体位移为201.7 mm。与CT相比,整体变形量减少了22.6%。
图6 冲击力和位移时程曲线
四、参数分析与多目标优化
对比了关键参数:仿生胞元个数、夹层与外管厚度比、内管与外管厚度比。
如图7所示,随着细胞数的增加,冲击后的最大跨中变形逐渐减小。在6胞到8胞的变化过程中局部压痕仅减少2.5%,EAC也仅提升2.6%,而8胞到10胞局部压痕减少了22.6%,EAC提升了18.2%。结合跨中截面的应力云图可以发现变形的胞元主要集中在被冲击的上表面,水平分布的胞元变形程度和应力水平较低,而下表面胞元几乎不变形,主要起到传递荷载的作用。所以对于冲击荷载作用下起主要作用的是上下表面的胞元,左右两侧的胞元应力水平较低,且越靠近截面水平轴这种现象就越明显。
图7不同仿生胞元数对仿生管跨中变形的影响
图8 不同仿生胞元数的CSCT冲击力和整体位移时程曲线
如图9所示,随着波纹夹层管tc / to比值的增加,结构的变形从整体弯曲和局部压痕的耦合变形逐步退化为较小的局部压痕变形。图10给出了冲击力和整体位移时程曲线,当tc / to比值相对较小时通常会导致结构更大的变形和位移。相反,tc / to比值相对较大时会降低变形程度,但会增加结构的质量和刚度以及峰值冲击力。随着tc / to比值的增大MIF和MCF均呈上升趋势,比值从0.2到1的过程中MCF和MIF分别提升了41.3%和46.2%。
图9不同tc / to对CSCT破坏模式的影响
图10 不同tc / to的CSCT冲击力和整体位移时程曲线
图11 不同tc / to对关键耐撞性参数的影响
整体位移和峰值冲击力随着ti / to比值的增大而逐渐上升,这与ti / to对于耐撞性的影响类似。不同的是,通过改变夹层厚度EAC提升了38%,而通过改变内管厚度仅提升12.6%。这是由于内管是夹层结构的主要承载结构,提供整体结构的刚度,有助于保持结构的形状和稳定性,对于吸能贡献程度较小。
图12 不同ti / to的CSCT冲击力和整体位移时程曲线
图13 不同ti / to对关键耐撞性参数的影响
多目标优化问题以MIF和EAC为目标函数,内管厚度ti,仿生夹层厚度tc以及仿生胞元数为变量,通过响应面元模型建立目标函数与变量之间的代理模型,然后通过非支配排序遗传算法NSGA-II对获取目标函数的Pareto front。通过误差分析,有限元模型和通过代理模型的得到的结果误差小于3%。得到了图15所示的优化结果,优化结果表明,CSCT在横向抗冲击和能量吸收方面具有潜在的工程应用价值。
图14 MIF和EAC的响应面(以12胞为例)
图15 多目标优化结果
五、结论
Conclusions
1
在横向冲击载荷作用下,CT和CSCT都表现出局部压痕和整体弯曲。CT 局部应力集中导致在冲击位置形成较大的塑性变形;CSCT的仿生物夹层能够有效吸收和消散能量,从而显著减少变形。
2
与CT相比,仿生CSCT的EAC分别提高了45.8%,整体变形和局部压痕分别减少了18.4%和54%。
3
仿生胞元数、tc / to和ti / to是影响CSCT耐撞性的关键参数。随着仿生胞元数、tc / to和ti / to的增加,CSCT的MIF、MCF和EAC均逐渐增加。然而,与其他参数相比,ti / to对EAC的影响较弱。
4
通过响应面(RSM)元模型和非支配排序遗传算法(NSGA-II),对不同仿生细胞数(N)的CSCT进行了优化设计。比较了多目标优化得到的帕累托前沿结果,研究结果表明,优化后CSCT具有出色的能量吸收性能,是一种潜在的抗横向冲击吸能结构。
六、相关文献
[1]Zheng Long, Li Fu-Qi, Wang Wen-Da*. A honeycomb
panel-based protective device for steel parking structure against transverse
impact. Journal of Constructional Steel Research, 2023, 211: 108203.
[2]Wang Wen-Da*, Zheng Long*, Xian Wei. Simplified multi-scale simulation investigation of 3D composite floor substructures under different column-removal scenarios. Journal of Constructional Steel Research, 2023, 208: 108002.
[3]Ji Sun-Hang, Wang Wen-Da*, Chen Wensu, Wang Rui, Shi Yan-Li. Experimental and numerical investigation on the lateral impact responses of CFST members after exposure to fire. Thin-Walled Structures, 2023, 190: 110968.
[4]Wang Wen-Da*, Zheng Long, Xian Wei. Performance of the CFST column to composite beam connection under static and impact loads.Journal of Constructional Steel Research, 2022, 198: 107567.
[5]Zheng Long, Wang Wen-Da*. Multi-scale numerical simulation analysis of CFST column-composite beam frame under a column-loss scenario. Journal of Constructional Steel Research, 2022, 190: 107151.
[6]Ji Sun-Hang, Wang Wen-Da*, Xian Wei. Lateral impact behaviour of square CFST columns under fire condition. Journal of Constructional Steel Research, 2022, 196: 107367.
作者简介
郑龙:男,辽宁人,讲师。主要从事钢与混凝土组合结构、装配式结构的抗震、抗连续倒塌及抗冲击性能研究。2023年甘肃省优秀博士毕业论文获得者。
2016.09-2019.06,兰州理工大学 土木工程学院 结构工程专业,硕士研究生(导师:王文达教授、史艳莉教授)
李富奇:男,江西人,硕士研究生。主要从事新型吸能结构抗冲击性能研究。2023年硕士研究生国家奖学金获得者。
相关研究
(可点击进入)
Part.1
组合结构连续性倒塌
1.组合结构连续性倒塌:次边柱失效下钢管混凝土组合框架抗连续性倒塌性能
2.组合结构连续性倒塌:钢管混凝土柱-组合梁节点抗连续性倒塌性能
3.组合结构连续性倒塌:简化多尺度模型在组合框架连续倒塌研究中的应用
4.组合结构连续性倒塌:装配式钢管混凝土柱-组合梁节点抗连续性倒塌性能
5.组合结构抗连续倒塌:钢管混凝土组合框架-装配式拉伸钢支撑结构抗连续倒塌性能研究
6.组合结构抗连续倒塌:全填充墙钢管混凝土组合框架抗连续倒塌性能研究
7.组合结构抗连续倒塌:冲击荷载下钢管混凝土柱-组合梁节点的抗连续倒塌性能研究
8.组合结构抗连续倒塌:钢管混凝土框架-RC剪力墙结构抗连续倒塌试验研究
Part.2
组合结构全寿命周期性能
1.组合结构全寿命周期性能:钢管初应力对内配型钢圆钢管混凝土受压构件力学性能影响
2.组合结构全寿命周期性能:施工初应力对内配型钢圆钢管混凝土压弯构件力学性能影响
3.组合结构全寿命周期性能:方套圆中空夹层钢管混凝土构件剪切性能
4.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——短柱轴压性能
5.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——偏压性能
6.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——纯弯性能
7.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压弯构件滞回性能
8.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压扭性能
9.组合结构全寿命周期性能:长期荷载作用下内配型钢方钢管混凝土力学性能研究
11.组合结构全寿命周期性能:内配型钢钢管混凝土压弯构件在单调及往复荷载下的受力性能
Part.3
混合结构抗震性能
1.混合结构抗震性能:钢管混凝土伸臂桁架-核心筒体剪力墙空间节点抗震性能试验研究
Part.4
组合结构撞击性能
2.组合结构撞击性能:火灾后内配型钢钢管混凝土柱侧向撞击和撞后性能研究
3.组合结构撞击性能:火灾后钢管混凝土构件侧向撞击性能试验和数值研究
4.组合结构撞击性能:火灾后内配型钢钢管混凝土构件侧向撞击性能试验研究Part.5
组合结构抗火性能
2.组合结构抗火性能:带防火保护层的内配型钢钢管混凝土柱耐火性能分析
Part.6
装配式钢筋混凝土结构
Part.7
新型高性能结构材料
Part.8
新型吸能结构
课题组主要成果
Part.1
组合结构连续性倒塌
[1]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse mechanism and reinforcement methods of composite frame with CFST columns and infill walls. Journal of Constructional Steel Research, 2023, 208: 108022.
[2]. Wang Wen-Da*, Zheng Long*, Xian Wei. Simplified multi-scale simulation investigation of 3D composite floor substructures under different column-removal scenarios. Journal of Constructional Steel Research, 2023,208: 108002.
[3]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse performance of concrete-filled steel tubular composite frame with RC shear walls under middle column removal. Journal of Building Engineering, 2023, 64: 105611.
[4]. Wang Wen-Da*, Zheng Long, Xian Wei. Performance of the CFST column to composite beam connection under static and impact loads. Journal of Constructional Steel Research, 2022,198: 107567.
[5]. 王景玄*,杨永,孙衍浩. 全填充墙钢管混凝土组合框架抗连续倒塌性能研究[J]. 土木工程学报,2022,55(8): 11-13.
[6]. Wang Jing-Xuan, Shen Ya-Jun, Gao Shan*, Wang Wen-Da. Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal. Engineering Structures, 2022, 266: 114635.
[7].Zheng Long, Wang Wen-Da*, Xian Wei. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connection with CFST column and composite beam. Engineering Structures, 2022, 256: 114061.
[8].Zheng Long, Wang Wen-Da*. Multi-scale numerical simulation analysis of CFST column-composite beam frame under a column-loss scenario. Journal of Constructional Steel Research, 2022, 190: 107151.
[9].Zheng Long, Wang Wen-Da*, Li Hua-Wei. Progressive collapse resistance of composite frame with concrete-filled steel tubular column under a penultimate column removal scenario. Journal of Constructional Steel Research, 2022, 189: 107085.
[10].王景玄*,杨永,周侃,李秋颖. 角柱失效下钢管混土柱-组合梁框架抗连续倒塌能力研究. 工程力学,2022,39(5):105-118.
[11].Wang Jiang-Xuan*, Yang Yong, Xian Wei, Li Qiu-Ying. Progressive collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted-welded hybrid connection. International Journal of Steel Structures, 2020, 20(5), 1618-1635.
[12].Wang Wen-Da*, Zheng Long, Li Hua-Wei. Experimental investigation of composite joints with concrete-filled steel tubular column under column removal scenario. Engineering Structures, 2020, 219: 110956.
[13].郑龙,王文达*,李华伟,李天昊.钢管混凝土柱-钢梁穿心螺栓外伸端板式节点抗连续倒塌性能研究.建筑结构学报,2019,40(11): 140-149
[14].Shi Yan-Li, Zheng Long, Wang Wen-Da*. The influence of key component characteristic on the resistance to progressive collapse of composite joint with the concrete-filled steel tubular column and steel beam with through bolt-extended endplate. Frontiers in Materials, 2019, 6: 64.
[15].王文达*,郑龙,魏国强.穿心构造的钢管混凝土柱-钢梁节点抗连续性倒塌性能分析与评估.工程科学与技术,2018,50(6): 39-47.
[16].王景玄,王文达*,李华伟.钢管混凝土平面框架子结构抗连续倒塌精细有限元分析.工程力学,2018,35(6): 105-114.
[17].王景玄,王文达*,李华伟.采用静-动力转换方法的钢管混凝土框架受火倒塌非线性分析.工程科学与技术,2017,49(4): 53-60.
[18].Wang Wen-Da*, Li Hua-Wei, Wang Jing-Xuan. Progressive collapse analysis of concrete-filled steel tubular column to steel beam connections using multi-scale model. Structures, 2017, 9: 123-133.
[19].史艳莉,石晓飞,王文达*,王景玄,李华伟.圆钢管混凝土柱-H钢梁内隔板式节点抗连续倒塌机理研究.振动与冲击,2016,35(19):148-155.
[20].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.
Part.2
组合结构撞击性能
[1].纪孙航,王文达*,赵晖,王蕊,史艳莉.受火后内配型钢方钢管混凝土构件抗侧向撞击性能试验研究.建筑结构学报,2024,45(3):148-159.
[2].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Shi Yan-Li*, Xian Wei. Lateral impact behaviour of post-fire steel-reinforced concrete-filled steel tubular members: Experiment and evaluation method. Engineering Structures, 2023, 293: 116612.
[3].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Xian Wei, Wang Rui, Shi Yan-Li*. Experimental and numerical investigation on the lateral impact responses of CFST members after exposure to fire. Thin-Walled Structures, 2023, 190: 110968.
[9].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*. Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular (SRCFST) members subjected to lateral impact. Thin-Walled Structures, 2021, 160: 107409.
[10].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*, Wang Rui. Investigation on the lateral impact responses of circular concrete-filled double-tube (CFDT) members. Composite Structures, 2021, 255: 112993.
[11].Xian Wei, Wang Wen-Da*, Wang Rui, Chen Wen-Su, Hao Hong. Dynamic response of steel-reinforced concrete-filled circular steel tubular members under lateral impact loads. Thin-Walled Structures, 2020, 151: 106736.
[12].史艳莉,纪孙航,王文达*,郑龙.高温作用下钢管混凝土构件侧向撞击性能研究.爆炸与冲击,2020,40(4): 043303.
[13].史艳莉,鲜威,王蕊,王文达*.方套圆中空夹层钢管混凝土组合构件横向撞击试验研究.土木工程学报,2019,52(12): 11-21.
[14].史艳莉,何佳星,王文达*,鲜威,王蕊.内配圆钢管的圆钢管混凝土构件耐撞性能分析.振动与冲击,2019,38(9): 123-132.
Part.3
组合结构抗火
[1].Wang Wen-Da*, Mao Wen-Jing, Zhou Kan. Experimental investigation on residual capacity of steel-reinforced concrete-filled thin-walled steel tubular columns subjected to combined loading and temperature. Thin-Walled Structures, 2024, 197: 111557.
[2].Mao Wen-Jing, Zhou Kan, Wang Wen-Da*. Investigation on fire resistance of steel-reinforced concrete-filled stell tubular columns subjected to non-unform fire. Engineering structures, 2023, 280: 115653.
[3].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan. Fire performance on steel-reinforced concrete-filled steel tubular columns with fire protection. Journal of Constructional Steel Research, 2022, 199: 107580.
[4].魏国强,王文达*,毛文婧.震损后方钢管混凝土柱耐火性能试验研究.建筑结构学报,2022,43(12):123-134.
[5].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan, Du Er-Feng. Experimental study on steel-reinforced concrete-filled steel tubular columns under the fire. Journal of Constructional Steel Research, 2021, 185: 106867.
[6].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85,DOI: 10.6052/j.issn.1000-4750.2020.05.0259
[7].Mao Wen-Jing, Wang Wen-Da*, Xian Wei. Numerical analysis on fire performance of steel-reinforced concrete-filled steel tubular columns with square cross-section. Structures, 2020, 28: 1-16.
[8].Xu Lei*, Wang Ming-Tao, Bao Yan-Hong, Wang Wen-Da. Numerical analysis on structural behaviors of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to 3-side fire. International Journal of Steel Structures, 2017, 17(4): 1515-1528.
[9].Bao Yan-Hong, Xu Lei*, Wang Wen-Da, Sun Jian-Gang. Numerical analysis on mechanical property of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to ISO-834 standard fire. International Journal of Steel Structures, 2017, 17(4): 1561-1581.
[10].王景玄,王文达*.考虑火灾全过程的钢管混凝土柱-组合梁平面框架受力性能分析.振动与冲击,2014, 33(11): 124-129+135.
[11].王景玄,王文达*.不同火灾工况下钢梁-钢管混凝土柱平面框架受火全过程分析.建筑结构学报,2014,35(3): 102-109.
Part.4
组合结构抗震
[1].Rui Jia, Xian Wei, Wang Wen-Da*, Zhu Yan-Peng, Wang Jing-Xuan. Experimental study on seismic behaviour of the outrigger truss-core wall spatial joints with peripheral CFST columns. Structures, 2022, 41: 1014-1026.
[2].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.
[3].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85.
[4].王凤,王文达*,史艳莉.钢管混凝土框架柱计算长度研究.工程力学,2015,32(1): 168-175.
[5].王文达*,魏国强,李华伟.钢管混凝土框架-RC剪力墙混合结构滞回性能分析.振动与冲击,2013, 32(15): 45-50.
[6].王文达*,史艳莉,文天鹏.钢框架平端板连接组合节点弯矩-转角关系.振动与冲击,2013,32(10):43-49+68.
[7].史艳莉,王文达,靳垚.考虑墙体作用的低层冷弯薄壁型钢轻型房屋住宅体系弹塑性动力分析.工程力学,2012,29(12): 186-195.
[8].Han Lin-Hai, Wang Wen-Da, Tao Zhong. Performance of circular CFST column-to-steel beam frames under lateral cyclic loading. Journal of Constructional Steel Research, 2011, 67(5): 876-890.
[9].曲慧,王文达.钢管混凝土梁柱连接节点弯矩-转角关系实用计算方法研究.工程力学,2010,27(5): 106-114.
[10].王文达,韩林海.钢管混凝土柱-钢梁平面框架的滞回关系.清华大学学报(自然科学版),2009,49(12): 1934-1938.
[11].王文达,韩林海.钢管混凝土框架力学性能的简化二阶弹塑性分析.清华大学学报(自然科学版),2009,49(9): 1455-1458.
[12].Wang Wen-Da, Han Lin-Hai, Zhao Xiao-Ling. Analytical behavior of frames with steel beam to concrete-filled steel tubular column. Journal of Constructional Steel Research, 2009, 65(3): 497-508.
[13].王文达,韩林海.钢管混凝土框架力学性能的非线性有限元分析.建筑结构学报,2008,29(6): 75-83.
[14].王文达,韩林海.钢管混凝土框架实用荷载-位移恢复力模型研究.工程力学,2008,25(11): 62-69.
[15].Wang Wen-Da, Han Lin-Hai, Uy Brian. Experimental behaviour of steel reduced beam section (RBS) to concrete- filled CHS column connections. Journal of Constructional Steel Research, 2008, 64(5): 493-504.
[16].Han Lin-Hai, Wang Wen-Da, Zhao Xiao-Ling. Behaviour of steel beam to concrete-filled SHS column frames: Finite element model and verifications. Engineering Structures, 2008, 30(6): 1647-1658.
[17].王文达,韩林海,游经团.方钢管混凝土柱-钢梁外加强环节点滞回性能的实验研究,土木工程学报,2006,39(9):17-25.
[18].王文达,韩林海,陶忠.钢管混凝土柱-钢梁平面框架抗震性能的试验研究.建筑结构学报,2006,27(3):48-58.
Part.5
组合结构全寿命周期性能
[1].Wu Xiao-Ming, Shi Yan-Li*, Zheng Long, Wang Wen-Da*. Performance of rectangular SRCFST stub columns under long-term loading and preload on steel tube. Structures, 2024, 61: 106110.
[2].王文达,陈亚明,纪孙航,史艳莉.双钢管混凝土构件滞回性能试验与分析[J].建筑结构学报,2023,45(1):128-138.
[3].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.
[4].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Zheng Long. Numerical studies on creep behaviour of SRCFST columns with initial stress of steel tube. Journal of Constructional Steel Research, 2023, 201: 108214.
[5].Wang Wen-Da*, Jia Zhi-Lu, Xian Wei, Shi Yan-Li. Performance of SRCFST member under long-term loading and preload on steel tube. Journal of Building Engineering, 2023, 73: 106700.
[6].Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Shi Yan-Li*. Cyclic and monotonic behaviour of steel-reinforced concrete-filled steel tubular columns. Thin-Walled Structures, 2023, 185: 110644.
[7].Wang Wen-Da*, Ji Sun-Hang, Shi Yan-Li. Experimental and numerical investigations on concrete-filled double-tubular slender columns under axial and eccentric loading. Journal of Constructional Steel Research, 2023, 201: 107714.
[8].Jia Zhi-Lu, Wang Wen-Da*, Shi Yan-Li, Xian Wei. Performance of steel-reinforced concrete-filled square steel tubular members under sustained axial compression loading. Engineering Structures, 2022, 263: 114464.
[9].贾志路,史艳莉,王文达*,鲜威.钢管初应力对内配型钢的圆钢管混凝土柱受压性能影响.建筑结构学报,2022,43(6): 63-74.
[10].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Xian Wei. Compression-bending behaviour of steel-reinforced concrete-filled circular steel tubular columns with preload. Structures, 2022, 36: 892-911.
[11].Jia Zhi-Lu, Shi Yan-Li, Xian Wei, Wang Wen-Da*. Torsional behaviour of concrete-filled circular steel tubular members under coupled compression and torsion. Structures. 2021, 34: 931-946.
[12].王文达*,纪孙航,史艳莉,张宸.内配型钢方钢管混凝土构件压弯剪性能研究.土木工程学报,2021,54(1): 76-87.
[13].Shi Yan-Li, Jia Zhi-Lu, Wang Wen-Da*, Xian Wei, Tan Ee Loon. Experimental and numerical study on torsional behaviour of steel-reinforced concrete-filled square steel tubular members. Structures, 2021, 32: 713-730.
[14].Wang Wen-Da*, Ji Sun-Hang, Xian Wei, Shi Yan-Li. Experimental and numerical investigations of steel-reinforced concrete-filled steel tubular members under compression-bending-shear loads. Journal of Constructional Steel Research, 2021, 181: 106609.
[15].Wang Wen-Da*, Xian Wei, Hou Chao, Shi Yan-Li. Experimental investigation and FE modelling of the flexural performance of square and rectangular SRCFST members. Structures, 2020, 27: 2411-2425.
[16].Wang Wen-Da*, Jia Zhi-Lu, Shi Yan-Li, Tan Ee Loon. Performance of steel-reinforced circular concrete-filled steel tubular members under combined compression and torsion. Journal of Constructional Steel Research, 2020, 173: 106271.
[17].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Mechanical behaviour of circular steel-reinforced concrete-filled steel tubular members under pure bending loads. Structures, 2020, 25: 8-23.
[18].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Experimental performance of circular concrete-filled steel tubular members with inner profiled steel under lateral shear load. Engineering Structures, 2019, 201: 109746.
[19].史艳莉*,周绪红,鲜威,王文达.无端板矩形钢管混凝土构件基本剪切性能研究.工程力学,2018,35(12): 25-33.
[20].王文达,于清.混凝土浇筑过程中方钢管柱的力学性能.清华大学学报(自然科学版),2013,53(1):6-11.
Part.6
中空夹层钢管混凝土结构
[1].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.
[2].Fan Jia-Hao, Wang Wen-Da*, Shi Yan-Li, Ji Sun-Hang. Torsional behaviour of tapered CFDST members with large void ratio. Journal of Building Engineering, 2022, 52: 104434.
[3].Shi Yan-Li, Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Fan Jia-Hao. Axial compressive behaviour of tapered CFDST stub columns with large void ratio. Journal of Constructional Steel Research, 2022, 191: 107206.
[4].Duan Li-Xin, Wang Wen-Da*, Xian Wei, Shi Yan-Li. Shear response of circular-in-square CFDST members: Experimental investigation and finite element analysis. Journal of Constructional Steel Research, 2022, 190: 107160.
[5].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.
[6].Wang Wen-Da*, Fan Jia-Hao, Shi Yan-Li, Xian Wei. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending. Journal of Constructional Steel Research, 2021, 182: 106689.
[7].史艳莉,张超峰,鲜威,王文达*.圆锥形中空夹层钢管混凝土偏压构件受力性能研究.建筑结构学报,2021,42(5): 155-164+176.
Part.7
纤维模型与子程序开发等
[1].Tao Zhong*, Katwal Utsab, Uy Brian, Wang Wen-Da. Simplified nonlinear simulation of rectangular concrete-filled steel tubular columns. ASCE Journal of Structural Engineering, 2021, 147(6): 04021061.
[2].Shi Yan-Li*, Li Hua-Wei, Wang Wen-Da, Hou Chao. A fiber model based on secondary development of ABAQUS for elastic-plastic analysis. International Journal of Steel Structures, 2018, 18(5): 1560-1576.
[3].Katwal Utsab, Tao Zhong*, Hassan Md Kamrul, Wang Wen-Da. Simplified numerical modeling of axially loaded circular concrete-filled steel stub columns. ASCE Journal of Structural Engineering, 2017, 143(12): 04017169.
[4].王文达*,魏国强.基于纤维模型的型钢混凝土组合剪力墙滞回性能分析.振动与冲击,2015,35(6):30-35.
[5].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.
[6].王文达*,杨全全,李华伟.基于分层壳单元与纤维梁单元组合剪力墙滞回性能分析.振动与冲击,2014, 33(16):142-149.
[7].李华伟,王文达*.ABAQUS二次开发在钢管混凝土结构有限元分析中的应用.建筑结构学报,2013,34(s1):353-358.
Part.8
装配式钢筋混凝土结构
[1].Yuan Yu-Jie, Wang Wen-Da*, Huang Hua. Deformation mechanism of steel artificial controllable plastic hinge in prefabricate frame. Journal of Constructional Steel Reserarch, 2023, 201: 107735.
Part.9
新型高性能结构材料
[1].Gao Fang-Fang, Tian Wei, Wang Wen-Da*. Residual impact resistance behavior of concrete containing carbon nanotubes after exposure to high temperatures. Construction and Building Materials, 2023, 366: 130183.
Part.10
新型吸能结构
[1].Zheng Long, Li Fu-Qi, Wang Wen-Da*, Shi Yan-Li*. Bionic corrugated sandwich cylindrical tubes subjected to transverse impact. Structures, 2024, 64: 106599.
[2].Zheng Long, Li Fu-Qi, Wang Wen-Da*. A honeycomb panel-based protective device for steel parking structure against transverse impact. Journal of Constructional Steel Research, 2023, 211: 108203.
编辑:郑 龙
审核:王文达
✦+
+
王文达课题组
微信号|wangwd_group
兰州理工大学土木工程学院王文达课题组
点击蓝字 阅读原文
+