组合结构抗火:内配型钢钢管混凝土柱在荷载和温度共同作用后的剩余力学性能研究

文摘   科学   2024-01-14 20:01   甘肃  



引用格式:

Wang WD, Mao WJ, Zhou K. Experimental investigation on residual capacity of steel-reinforced concrete-filled thin-walled steel tubular columns subjected to combined loading and temperature. Thin-Walled Structures2024, 197: 111557.


Highlights:

1.Residual capacity tests on SRCFST columns subjected to full-range fire were conducted.

2.The behaviour and residual resistance of SRCFST columns were analyzed.

3.FE models were developed and validated against the test results.

4.Residual strength of SRCFST columns subjected to three different paths were compared.

5.Current guidelines were extended to assess the residual strength of SRCFST columns.

论文信息:

论文链接:https://www.sciencedirect.com/science/article/pii/S0263823124000028

论文50天免费下载链接(2024226)https://authors.elsevier.com/a/1iObyx-8RbkqS

DOI:10.1016/j.tws.2024.111557


一、研究背景

柱结构作为主要的承重构件,在建筑结构中起到至关重要的作用,高温作用下柱的破坏则会引起梁、节点及整个框架的失效和倒塌。目前,对结构抗火性能的研究多集中在仅考虑升温阶段构件发生破坏的耐火性能,著名的Cardington火灾试验及2003年湖南衡阳大厦在火灾降温过程中发生突然坍塌等典型事故表明,结构即使在火灾升温过程中没有受到破坏,在降温阶段可能由于抗力的进一步降低而破坏;整体结构中,降温段构件内部产生的温度内力以及内力重分布,对结构能有重要影响。因此,进行结构火灾后性能的准确评估时,需考虑结构所经历的温度和荷载作用历史。内配型钢钢管混凝土(SRCFST)柱近年来在高层及超高层建筑中有广泛应用,本文对该类组合柱构件在考虑荷载及升、降温火灾全过程作用后的剩余力学性能进行试验及研究,以期为结构在火灾后的修复和加固提供指导。


二、试验设计

本文设计加工了6SRCFST柱试件,进行考虑全过程火灾作用后SRCFST柱剩余力学性能试验,其中3根为方形试件,3根为圆形截面试件,所有试件均承受轴向荷载作用,试件设计如图1所示。为准确评估升温时间对火灾作用后力学性能的影响,以耐火试验得到的耐火极限tR作参考,定义升温时间比t0t0=th/tR,其中th为升温时间)。

韩林海提出一个完整的时间-荷载-温度路径来描述结构在全过程火灾和荷载作用下的全过程,如2Path-2所示。由于试验条件所限,本试验中采用Path-3,试验分两个阶段相继进行,即有考虑初始荷载的升降温火灾试验(O-A-B-C-D-D')和火灾后剩余承载试验(D'-D-E),该试验考虑了多阶段加载和冷却阶段。火灾后剩余力学性能试验装置如3所示。



三、试验结果与讨论


火灾试验结果表明:由于混凝土较小的导热系数和热惰性,降温过程中混凝土内部温度仍处于持续上升阶段,温度-时间关系曲线有明显的滞后;混凝土上测点的温度-时间关系曲线在大约120℃时出现明显的温度平台现象(4所示)。型钢与其包裹混凝土区域形成了一个低温核心区,历史最高温度均低于200(5所示),这对SRCFST柱构件在经历全过程火灾作用后的力学性能发挥了至关重要的作用。



火灾后剩余力学试验表明:SRCFST柱试件破坏形态与常温下相似,整体表现为失稳产生的弯曲破坏,且外钢管有明显的局部屈曲(6);型钢在火灾后也呈现出明显的侧向挠曲,但翼缘没有明显局部屈曲,表明混凝土的存在一定程度上增强了型钢的稳定性;型钢与其包裹区域的混凝土形成复合约束区,导致内部混凝土强度提高且抑制了裂缝的发展。



SRCFST柱全过程火灾后的荷载-变形曲线可分弹性段、弹塑性段和下降段三个阶段,且下降段比较平缓,构件具有较好的延性(图7)。侧向挠度随着荷载的增加逐渐趋于对称且接近正弦半波曲线,如图8所示。根据量测应变结果,采用弹塑性分析方法和Von Mises准则评估钢管在加载过程中的应力状态,如图9所示,当轴向载荷达到峰值载荷的76%-86%左右时,受压侧钢管首先开始屈服,横向应力在整个阶段保持相对较低的水平发展,并且在受拉侧和受压侧都呈现出受拉状态。


对剩余承载力和延性进行分析(图10),剩余承载力和延性均随初始火灾荷载比和升温时间比的增加而降低。定义承载力影响系数RSI以评估SRCFST柱经历全过程火灾作用后承载力的损失(图11),结果表明:对于初始荷载比为0.4的圆形SRCFST柱,其在经历升降温全过程火灾作用后的剩余承载力较常温下的极限承载力高;整体上看,初始火灾荷载比越高的试件其承载力损失越大;方形试件在升降温火灾过程中承载力的损失较圆形试件大,承载力下降10%-20%左右。



四、有限元分析


采用有限元软件ABAQUS建立热力耦合模型,对典型测点的温度变化、荷载-变形关系曲线及剩余承载力进行计算,并将采用图2中三种路径的计算结果与试验结果对比,如图12、图13所示。结果表明:火灾试验后对试件进行卸载,钢管混凝土柱的力学性能有一定程度的恢复;不考虑初始荷载作用计算得到的剩余承载力比path-2/3有显著提高;要准确评估SRCFST柱的火灾后力学性能,不应忽略初始荷载作用。采用现有钢-混凝土组合柱在外荷载和火灾升、降温共同作用后的剩余承载力设计方法,对SRCFST柱的适用性进行评估,基于欧洲规范4第1-1部分中屈曲抵抗的修正设计方法提供了最准确的预测结果。



五、结论

Conclusions

1






火灾后SRCFST柱试件均发生整体失稳破坏,且钢管局部屈曲;混凝土有明显的温度滞后,型钢和包裹区域混凝土形成了一个低温的复合约束区,导致该区域混凝土的强度提高。

2






随升温时间比和初始火灾荷载比的增加,SRCFST柱的剩余承载力和延性均有显著降低;方形试件的承载力在全过程火灾作用后有较大损失,承载力降低10%-20%。

3






初始荷载作用对SRCFST柱构件火灾后的力学性能有不利影响,为准确评估构件或结构火灾后力学性能,应考虑初始荷载的作用。

4






采用现有钢-混凝土组合柱在荷载和温度共同作用后的剩余承载力设计方法,对SRCFST柱的适用性进行评估,结果表明,更高精度的设计方法有待进一步研究和提出。



六、相关文献

[1]Mao Wenjing, Wang Wenda*, Zhou K. Investigation on fire resistance of steel-reinforced concrete-filled steel tubular columns subjected to non-uniform fire. Engineering structures, 2023, 280: 115653.

[2]Mao Wenjing, Wang Wenda*, Zhou Kan. Fire performance on steel-reinforced concrete-filled steel tubular columns with fire protection. Journal of Constructional Steel Research, 2022, 199: 107580.

[3]Mao Wenjing, Wang WenDa*, Zhou KanDu Erfeng. Experimental study on steel-reinforced concrete-filled steel tubular columns under the fire. Journal of Constructional Steel Research, 2021, 185: 106867.

[4]Mao Wenjing, Wang Wenda*, Xian Wei. Numerical analysis on fire performance of steel-reinforced concrete-filled steel tubular columns with square cross-section. Structures, 2020, 28: 1-16.

[5]魏国强,王文达*,毛文婧.震损后方钢管混凝土柱耐火性能试验研究.建筑结构学报,202243(12)123-134.

[6]Ji Sunhang, Wang Wenda*, Chen Wensu, Shi Yanli, Xian Wei. Lateral impact behaviour of post-fire steel-reinforced concrete-filled steel tubular members: Experiment and evaluation method. Engineering Structures2023, 293: 116612.

[7]毛文婧,王文达*,王景玄.三面受火的内配型钢方钢管混凝土柱火灾全过程分析.工程力学,201633(S1)143-149.

[8]毛文婧,史艳莉,王文达*.内配型钢圆钢管混凝土轴压短柱在不同含钢率下承载力分析.工程力学,201734(S1)63-70.

[9]毛文婧,王文达*,王景玄.含钢率对内配型钢方钢管混凝土轴压柱耐火极限的影响.建筑结构学报,201738(S1)126-132.



 作者简介


毛文婧:女,甘肃人,讲师。主要从事钢与混凝土组合结构静力及抗火性能研究。

2013.09-2020.12,兰州理工大学结构工程专业(硕博连读),博士研究生(导师:王文达教授、史艳莉教授);

2021.01-2024.01,兰州理工大学,博士后(合作导师:张云升教授、王文达教授);
2023.09-至今,兰州理工大学土木工程学院,讲师。






       相关研究

           (可点击进入)











Part.1

组合结构连续性倒塌

1.组合结构连续性倒塌:次边柱失效下钢管混凝土组合框架抗连续性倒塌性能

2.组合结构连续性倒塌:钢管混凝土柱-组合梁节点抗连续性倒塌性能

3.组合结构连续性倒塌:简化多尺度模型在组合框架连续倒塌研究中的应用

4.组合结构连续性倒塌:装配式钢管混凝土柱-组合梁节点抗连续性倒塌性能

5.组合结构抗连续倒塌:钢管混凝土组合框架-装配式拉伸钢支撑结构抗连续倒塌性能研究

6.组合结构抗连续倒塌:全填充墙钢管混凝土组合框架抗连续倒塌性能研究

7.组合结构抗连续倒塌:冲击荷载下钢管混凝土柱-组合梁节点的抗连续倒塌性能研究

8.组合结构抗连续倒塌:钢管混凝土框架-RC剪力墙结构抗连续倒塌试验研究

9.组合结构抗连续倒塌:基于简化多尺度模型的钢管混凝土空间框架抗连续倒塌性能研究

10.组合结构抗连续倒塌:钢管混凝土框架-填充墙结构抗倒塌机制与加固策略

Part.2

组合结构全寿命周期性能

1.组合结构全寿命周期性能:钢管初应力对内配型钢圆钢管混凝土受压构件力学性能影响

2.组合结构全寿命周期性能:施工初应力对内配型钢圆钢管混凝土压弯构件力学性能影响

3.组合结构全寿命周期性能:方套圆中空夹层钢管混凝土构件剪切性能 

4.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——短柱轴压性能

5.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——偏压性能

6.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——纯弯性能

7.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压弯构件滞回性能

8.组合结构全寿命周期性能:大空心率圆锥形中空夹层钢管混凝土——压扭性能

9.组合结构全寿命周期性能:长期荷载作用下内配型钢方钢管混凝土力学性能研究

10.组合结构全寿命周期性能:双钢管混凝土长柱轴压和偏压性能研究

11.组合结构全寿命周期性能:内配型钢钢管混凝土压弯构件在单调及往复荷载下的受力性能
12.组合结构全寿命周期性能:钢管初应力和长期荷载共同作用下内配型钢圆钢管混凝土受压性能研究
13.组合结构全寿命周期性能:考虑钢管初应力的内配型钢钢管混凝土柱徐变性能研究
14.组合结构全寿命周期性能:基于机器学习的圆中空夹层钢管混凝土柱轴压承载力预测
15.组合结构全寿命周期性能:双钢管混凝土构件滞回性能试验与分析

Part.3

混合结构抗震性能

1.混合结构抗震性能:钢管混凝土伸臂桁架-核心筒体剪力墙空间节点抗震性能试验研究


Part.4

组合结构撞击性能

1.组合结构撞击性能:火灾下方钢管混凝土柱侧向撞击性能研究

2.组合结构撞击性能:火灾后内配型钢钢管混凝土柱侧向撞击和撞后性能研究

3.组合结构撞击性能:火灾后钢管混凝土构件侧向撞击性能试验和数值研究

4.组合结构撞击性能:火灾后内配型钢钢管混凝土构件侧向撞击性能试验研究
5.组合结构撞击性能:受火后内配型钢方钢管混凝土构件抗侧向撞击性能试验研究

Part.5

组合结构抗火性能

1.组合结构抗火性能:震损后方钢管混凝土柱耐火性能试验研究

2.组合结构抗火性能:带防火保护层的内配型钢钢管混凝土柱耐火性能分析

3.组合结构抗火性能:内配型钢钢管混凝土柱耐火性能试验研究

4.组合结构抗火性能:非均匀受火的内配型钢钢管混凝土柱耐火性能分析

Part.6

装配式钢筋混凝土结构

1.装配式钢筋混凝土结构:人工可控塑性铰钢节点变形机制研究

Part.7

新型高性能结构材料

1.新型高性能结构材料:高温后碳纳米管增强混凝土的抗冲击性能

Part.8

新型吸能结构

1.新型吸能结构:蜂窝吸能板提升停车结构防撞性能研究


课题组主要成果











Part.1

组合结构连续性倒塌

[1]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse mechanism and reinforcement methods of composite frame with CFST columns and infill walls. Journal of Constructional Steel Research, 2023, 208: 108022.

[2]. Wang Wen-Da*, Zheng Long*, Xian Wei. Simplified multi-scale simulation investigation of 3D composite floor substructures under different column-removal scenariosJournal of Constructional Steel Research, 2023,208: 108002.

[3]. Wang Jing-Xuan, Sun Yan-Hao, Gao Shan, Wang Wen-Da*. Anti-collapse performance of concrete-filled steel tubular composite frame with RC shear walls under middle column removal. Journal of Building Engineering, 2023, 64: 105611.

[4]. Wang Wen-Da*, Zheng Long, Xian Wei. Performance of the CFST column to composite beam connection under static and impact loads. Journal of Constructional Steel Research, 2022,198: 107567.

[5]. 王景玄*,杨永,孙衍浩. 全填充墙钢管混凝土组合框架抗连续倒塌性能研究[J]. 土木工程学报,2022,55(8): 11-13.

[6]. Wang Jing-Xuan, Shen Ya-Jun, Gao Shan*, Wang Wen-Da. Anti-collapse performance of concrete-filled steel tubular composite frame with assembled tensile steel brace under middle column removal. Engineering Structures, 2022, 266: 114635.

[7].Zheng Long, Wang Wen-Da*, Xian Wei. Experimental and numerical investigation on the anti-progressive collapse performance of fabricated connection with CFST column and composite beam. Engineering Structures, 2022, 256: 114061.

[8].Zheng Long, Wang Wen-Da*. Multi-scale numerical simulation analysis of CFST column-composite beam frame under a column-loss scenario. Journal of Constructional Steel Research, 2022, 190: 107151.

[9].Zheng Long, Wang Wen-Da*, Li Hua-Wei. Progressive collapse resistance of composite frame with concrete-filled steel tubular column under a penultimate column removal scenario. Journal of Constructional Steel Research, 2022, 189: 107085.

[10].王景玄*,杨永,周侃,李秋颖. 角柱失效下钢管混土柱-组合梁框架抗连续倒塌能力研究. 工程力学,2022,39(5):105-118.

[11].Wang Jiang-Xuan*, Yang Yong, Xian Wei, Li Qiu-Ying. Progressive collapse mechanism analysis of concrete-filled square steel tubular column to steel beam joint with bolted-welded hybrid connection. International Journal of Steel Structures, 2020, 20(5), 1618-1635.

[12].Wang Wen-Da*, Zheng Long, Li Hua-Wei. Experimental investigation of composite joints with concrete-filled steel tubular column under column removal scenario. Engineering Structures, 2020, 219: 110956.

[13].郑龙,王文达*,李华伟,李天昊.钢管混凝土柱-钢梁穿心螺栓外伸端板式节点抗连续倒塌性能研究.建筑结构学报,2019,40(11): 140-149

[14].Shi Yan-Li, Zheng Long, Wang Wen-Da*. The influence of key component characteristic on the resistance to progressive collapse of composite joint with the concrete-filled steel tubular column and steel beam with through bolt-extended endplate. Frontiers in Materials, 2019, 6: 64.

[15].王文达*,郑龙,魏国强.穿心构造的钢管混凝土柱-钢梁节点抗连续性倒塌性能分析与评估.工程科学与技术,2018,50(6): 39-47.

[16].王景玄,王文达*,李华伟.钢管混凝土平面框架子结构抗连续倒塌精细有限元分析.工程力学,2018,35(6): 105-114.

[17].王景玄,王文达*,李华伟.采用静-动力转换方法的钢管混凝土框架受火倒塌非线性分析.工程科学与技术,2017,49(4): 53-60.

[18].Wang Wen-Da*, Li Hua-Wei, Wang Jing-Xuan. Progressive collapse analysis of concrete-filled steel tubular column to steel beam connections using multi-scale model. Structures, 2017, 9: 123-133.

[19].史艳莉,石晓飞,王文达*,王景玄,李华伟.圆钢管混凝土柱-H钢梁内隔板式节点抗连续倒塌机理研究.振动与冲击,2016,35(19):148-155.

[20].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.

Part.2

组合结构撞击性能

[1].纪孙航,王文达*,赵晖,王蕊,史艳莉.受火后内配型钢方钢管混凝土构件抗侧向撞击性能试验研究.建筑结构学报,2024,45(3):148-159.

[2].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Shi Yan-Li*, Xian Wei. Lateral impact behaviour of post-fire steel-reinforced concrete-filled steel tubular members: Experiment and evaluation methodEngineering Structures2023, 293: 116612.

[3].Ji Sun-Hang, Wang Wen-Da*, Chen Wen-Su, Xian Wei, Wang Rui, Shi Yan-Li*Experimental and numerical investigation on the lateral impact responses of CFST members after exposure to fire. Thin-Walled Structures2023, 190: 110968.

[4].Ji Sun-Hang, Wang Wen-Da*, Xian Wei. Impact and post-impact behaviours of steel-reinforced concrete-filled steel tubular columns after exposure to fire. Structures, 2022, 44: 680-697.
[5].Ji Sun-Hang, Wang Wen-Da*, Xian Wei. Lateral impact behaviour of square CFST columns under fire condition. Journal of Constructional Steel Research, 2022, 196: 107367.
[6].王文达*,陈振幅,纪孙航.长期持荷工况下钢管混凝土构件的抗撞击性能研究.爆炸与冲击,2021,41(8): 083106.
[7].纪孙航,王文达*,鲜威.CFRP加固火灾作用后圆钢管混凝土构件的侧向撞击性能研究.工程力学,2021,38(8): 178-191.
[8].纪孙航,史艳莉,王文达*.火灾作用后钢管混凝土构件侧向撞击性能研究.振动与冲击,2021,40(4): 179-187.

[9].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*. Experimental and numerical studies on square steel-reinforced concrete-filled steel tubular (SRCFST) members subjected to lateral impact. Thin-Walled Structures, 2021, 160: 107409.

[10].Xian Wei, Chen Wen-Su, Hao Hong, Wang Wen-Da*, Wang Rui. Investigation on the lateral impact responses of circular concrete-filled double-tube (CFDT) members. Composite Structures, 2021, 255: 112993.

[11].Xian Wei, Wang Wen-Da*, Wang Rui, Chen Wen-Su, Hao Hong. Dynamic response of steel-reinforced concrete-filled circular steel tubular members under lateral impact loads. Thin-Walled Structures, 2020, 151: 106736.

[12].史艳莉,纪孙航,王文达*,郑龙.高温作用下钢管混凝土构件侧向撞击性能研究.爆炸与冲击,2020,40(4): 043303.

[13].史艳莉,鲜威,王蕊,王文达*.方套圆中空夹层钢管混凝土组合构件横向撞击试验研究.土木工程学报,2019,52(12): 11-21.

[14].史艳莉,何佳星,王文达*,鲜威,王蕊.内配圆钢管的圆钢管混凝土构件耐撞性能分析.振动与冲击,2019,38(9): 123-132.

Part.3

组合结构抗火

[1].Wang Wen-Da*Mao Wen-Jing, Zhou Kan. Experimental investigation on residual capacity of steel-reinforced concrete-filled thin-walled steel tubular columns subjected to combined loading and temperature. Thin-Walled Structures, 2024, 197: 111557.

[2].Mao Wen-Jing, Zhou Kan, Wang Wen-Da*. Investigation on fire resistance of steel-reinforced concrete-filled stell tubular columns subjected to non-unform fire. Engineering structures, 2023, 280: 115653.

[3].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan. Fire performance on steel-reinforced concrete-filled steel tubular columns with fire protection. Journal of Constructional Steel Research, 2022, 199: 107580.

[4].魏国强,王文达*,毛文婧.震损后方钢管混凝土柱耐火性能试验研究.建筑结构学报,2022,43(12):123-134.

[5].Mao Wen-Jing, Wang Wen-Da*, Zhou Kan, Du Er-Feng. Experimental study on steel-reinforced concrete-filled steel tubular columns under the fire. Journal of Constructional Steel Research, 2021, 185: 106867.

[6].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85,DOI: 10.6052/j.issn.1000-4750.2020.05.0259

[7].Mao Wen-Jing, Wang Wen-Da*, Xian Wei. Numerical analysis on fire performance of steel-reinforced concrete-filled steel tubular columns with square cross-section. Structures, 2020, 28: 1-16.

[8].Xu Lei*, Wang Ming-Tao, Bao Yan-Hong, Wang Wen-Da. Numerical analysis on structural behaviors of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to 3-side fire. International Journal of Steel Structures, 2017, 17(4): 1515-1528.

[9].Bao Yan-Hong, Xu Lei*, Wang Wen-Da, Sun Jian-Gang. Numerical analysis on mechanical property of concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to ISO-834 standard fire. International Journal of Steel Structures, 2017, 17(4): 1561-1581.

[10].王景玄,王文达*.考虑火灾全过程的钢管混凝土柱-组合梁平面框架受力性能分析.振动与冲击,2014, 33(11): 124-129+135.

[11].王景玄,王文达*.不同火灾工况下钢梁-钢管混凝土柱平面框架受火全过程分析.建筑结构学报,2014,35(3): 102-109.

Part.4

组合结构抗震

[1].Rui Jia, Xian Wei, Wang Wen-Da*, Zhu Yan-Peng, Wang Jing-Xuan. Experimental study on seismic behaviour of the outrigger truss-core wall spatial joints with peripheral CFST columns. Structures, 2022, 41: 1014-1026.

[2].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.

[3].王文达*,陈润亭.方钢管混凝土柱-外环板式组合梁节点在地震损伤后的耐火性能分析.工程力学,2021,38(3): 73-85.

[4].王凤,王文达*,史艳莉.钢管混凝土框架柱计算长度研究.工程力学,2015,32(1): 168-175.

[5].王文达*,魏国强,李华伟.钢管混凝土框架-RC剪力墙混合结构滞回性能分析.振动与冲击,2013, 32(15): 45-50.

[6].王文达*,史艳莉,文天鹏.钢框架平端板连接组合节点弯矩-转角关系.振动与冲击,2013,32(10):43-49+68.

[7].史艳莉,王文达,靳垚.考虑墙体作用的低层冷弯薄壁型钢轻型房屋住宅体系弹塑性动力分析.工程力学,2012,29(12): 186-195.

[8].Han Lin-Hai, Wang Wen-Da, Tao Zhong. Performance of circular CFST column-to-steel beam frames under lateral cyclic loading. Journal of Constructional Steel Research, 2011, 67(5): 876-890.

[9].曲慧,王文达.钢管混凝土梁柱连接节点弯矩-转角关系实用计算方法研究.工程力学,2010,27(5): 106-114.

[10].王文达,韩林海.钢管混凝土柱-钢梁平面框架的滞回关系.清华大学学报(自然科学版),2009,49(12): 1934-1938.

[11].王文达,韩林海.钢管混凝土框架力学性能的简化二阶弹塑性分析.清华大学学报(自然科学版),2009,49(9): 1455-1458.

[12].Wang Wen-Da, Han Lin-Hai, Zhao Xiao-Ling. Analytical behavior of frames with steel beam to concrete-filled steel tubular column. Journal of Constructional Steel Research, 2009, 65(3): 497-508.

[13].王文达,韩林海.钢管混凝土框架力学性能的非线性有限元分析.建筑结构学报,2008,29(6): 75-83.

[14].王文达,韩林海.钢管混凝土框架实用荷载-位移恢复力模型研究.工程力学,2008,25(11): 62-69.

[15].Wang Wen-Da, Han Lin-Hai, Uy Brian. Experimental behaviour of steel reduced beam section (RBS) to concrete- filled CHS column connections. Journal of Constructional Steel Research, 2008, 64(5): 493-504.

[16].Han Lin-Hai, Wang Wen-Da, Zhao Xiao-Ling. Behaviour of steel beam to concrete-filled SHS column frames: Finite element model and verifications. Engineering Structures, 2008, 30(6): 1647-1658.

[17].王文达,韩林海,游经团.方钢管混凝土柱-钢梁外加强环节点滞回性能的实验研究,土木工程学报,2006,39(9):17-25.

[18].王文达,韩林海,陶忠.钢管混凝土柱-钢梁平面框架抗震性能的试验研究.建筑结构学报,2006,27(3):48-58.

Part.5

组合结构全寿命周期性能

[1].王文达,陈亚明,纪孙航,史艳莉.双钢管混凝土构件滞回性能试验与分析[J].建筑结构学报,2023,45(1):128-138.

[2].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.

[3].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Zheng Long. Numerical studies on creep behaviour of SRCFST columns with initial stress of steel tube. Journal of Constructional Steel Research, 2023, 201: 108214.

[4].Wang Wen-Da*, Jia Zhi-Lu, Xian Wei, Shi Yan-Li. Performance of SRCFST member under long-term loading and preload on steel tube. Journal of Building Engineering, 2023, 73: 106700.

[5].Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Shi Yan-Li*. Cyclic and monotonic behaviour of steel-reinforced concrete-filled steel tubular columns. Thin-Walled Structures, 2023, 185: 110644.

[6].Wang Wen-Da*, Ji Sun-Hang, Shi Yan-Li. Experimental and numerical investigations on concrete-filled double-tubular slender columns under axial and eccentric loading. Journal of Constructional Steel Research, 2023, 201: 107714.

[7].Jia Zhi-Lu, Wang Wen-Da*, Shi Yan-Li, Xian Wei. Performance of steel-reinforced concrete-filled square steel tubular members under sustained axial compression loading. Engineering Structures, 2022, 263: 114464.

[8].贾志路,史艳莉,王文达*,鲜威.钢管初应力对内配型钢的圆钢管混凝土柱受压性能影响.建筑结构学报,2022,43(6): 63-74.

[9].Jia Zhi-Lu, Shi Yan-Li, Wang Wen-Da*, Xian Wei. Compression-bending behaviour of steel-reinforced concrete-filled circular steel tubular columns with preload. Structures, 2022, 36: 892-911.

[10].Jia Zhi-Lu, Shi Yan-Li, Xian Wei, Wang Wen-Da*. Torsional behaviour of concrete-filled circular steel tubular members under coupled compression and torsion. Structures. 2021, 34: 931-946.

[11].王文达*,纪孙航,史艳莉,张宸.内配型钢方钢管混凝土构件压弯剪性能研究.土木工程学报,2021,54(1): 76-87.

[12].Shi Yan-Li, Jia Zhi-Lu, Wang Wen-Da*, Xian Wei, Tan Ee Loon. Experimental and numerical study on torsional behaviour of steel-reinforced concrete-filled square steel tubular members. Structures, 2021, 32: 713-730.

[13].Wang Wen-Da*, Ji Sun-Hang, Xian Wei, Shi Yan-Li. Experimental and numerical investigations of steel-reinforced concrete-filled steel tubular members under compression-bending-shear loads. Journal of Constructional Steel Research, 2021, 181: 106609.

[14].Wang Wen-Da*, Xian Wei, Hou Chao, Shi Yan-Li. Experimental investigation and FE modelling of the flexural performance of square and rectangular SRCFST members. Structures, 2020, 27: 2411-2425.

[15].Wang Wen-Da*, Jia Zhi-Lu, Shi Yan-Li, Tan Ee Loon. Performance of steel-reinforced circular concrete-filled steel tubular members under combined compression and torsion. Journal of Constructional Steel Research, 2020, 173: 106271.

[16].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Mechanical behaviour of circular steel-reinforced concrete-filled steel tubular members under pure bending loads. Structures, 2020, 25: 8-23.

[17].Shi Yan-Li, Xian Wei, Wang Wen-Da*, Li Hua-Wei. Experimental performance of circular concrete-filled steel tubular members with inner profiled steel under lateral shear load. Engineering Structures, 2019, 201: 109746.

[18].史艳莉*,周绪红,鲜威,王文达.无端板矩形钢管混凝土构件基本剪切性能研究.工程力学,2018,35(12): 25-33.

[19].王文达,于清.混凝土浇筑过程中方钢管柱的力学性能.清华大学学报(自然科学版),2013,53(1):6-11.

Part.6

中空夹层钢管混凝土结构

[1].Hong Zhen-Tao, Wang Wen-Da*, Zheng Long, Shi Yan-Li. Machine learning models for predicting axial compressive capacity of circular CFDST columns. Structures, 2023, 57: 105285.

[2].Fan Jia-Hao, Wang Wen-Da*, Shi Yan-Li, Ji Sun-Hang. Torsional behaviour of tapered CFDST members with large void ratio. Journal of Building Engineering, 2022, 52: 104434.

[3].Shi Yan-Li, Ji Sun-Hang, Wang Wen-Da*, Xian Wei, Fan Jia-Hao. Axial compressive behaviour of tapered CFDST stub columns with large void ratio. Journal of Constructional Steel Research, 2022, 191: 107206.

[4].Duan Li-Xin, Wang Wen-Da*, Xian Wei, Shi Yan-Li. Shear response of circular-in-square CFDST members: Experimental investigation and finite element analysis. Journal of Constructional Steel Research, 2022, 190: 107160.

[5].史艳莉,纪孙航,王文达*,张宸,范家浩.大空心率圆锥形中空夹层钢管混凝土压弯构件滞回性能研究.土木工程学报,2022,55(1): 75-88.

[6].Wang Wen-Da*, Fan Jia-Hao, Shi Yan-Li, Xian Wei. Research on mechanical behaviour of tapered concrete-filled double skin steel tubular members with large hollow ratio subjected to bending. Journal of Constructional Steel Research, 2021, 182: 106689.

[7].史艳莉,张超峰,鲜威,王文达*.圆锥形中空夹层钢管混凝土偏压构件受力性能研究.建筑结构学报,2021,42(5): 155-164+176.

Part.7

纤维模型与子程序开发等

[1].Tao Zhong*, Katwal Utsab, Uy Brian, Wang Wen-Da. Simplified nonlinear simulation of rectangular concrete-filled steel tubular columns. ASCE Journal of Structural Engineering, 2021, 147(6): 04021061.

[2].Shi Yan-Li*, Li Hua-Wei, Wang Wen-Da, Hou Chao. A fiber model based on secondary development of ABAQUS for elastic-plastic analysis. International Journal of Steel Structures, 2018, 18(5): 1560-1576.

[3].Katwal Utsab, Tao Zhong*, Hassan Md Kamrul, Wang Wen-Da. Simplified numerical modeling of axially loaded circular concrete-filled steel stub columns. ASCE Journal of Structural Engineering, 2017, 143(12): 04017169.

[4].王文达*,魏国强.基于纤维模型的型钢混凝土组合剪力墙滞回性能分析.振动与冲击,2015,35(6):30-35.

[5].王文达*,王景玄,周小燕.基于纤维模型的钢管混凝土组合框架连续倒塌非线性动力分析.工程力学,2014,31(9): 142-151.

[6].王文达*,杨全全,李华伟.基于分层壳单元与纤维梁单元组合剪力墙滞回性能分析.振动与冲击,2014, 33(16):142-149.

[7].李华伟,王文达*.ABAQUS二次开发在钢管混凝土结构有限元分析中的应用.建筑结构学报,2013,34(s1):353-358.

Part.8

装配式钢筋混凝土结构

[1].Yuan Yu-Jie, Wang Wen-Da*, Huang Hua. Deformation mechanism of steel artificial controllable plastic hinge in prefabricate frame. Journal of Constructional Steel Reserarch, 2023, 201: 107735.

Part.9

新型高性能结构材料

[1].Gao Fang-Fang, Tian Wei, Wang Wen-Da*. Residual impact resistance behavior of concrete containing carbon nanotubes after exposure to high temperatures. Construction and Building Materials, 2023, 366: 130183. 

Part.10

新型吸能结构

[1].Zheng Long, Li Fu-Qi, Wang Wen-Da*. A honeycomb panel-based protective device for steel parking structure against transverse impact. Journal of Constructional Steel Research, 2023, 211: 108203.






编辑:郑   龙

审核:王文达


+

+

王文达课题组

微信号|wangwd_group

兰州理工大学土木工程学院王文达课题组


点击蓝字 阅读原文

+

王文达课题组
兰州理工大学土木工程学院王文达教授课题组公众号,主要进行钢与混凝土组合结构混合结构、钢结构及结构抗火研究、工程技术咨询等。
 最新文章