电池人必备!电化学阻抗谱(EIS),太详细了!

百科   2024-12-11 15:09   广东  

导读

电化学阻抗谱(Electrochemical Impedance Spectroscopy,EIS)是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。近年来,由于频率响应分析仪的快速发展,交流阻抗的测试精度越来越高,且目前在电化学领域具有广泛的应用,例如电极过程动力学分析(双电层和和扩散等)、研究电池电极材料、固体电解质、导电高分子、腐蚀防护机理等。


01
电化学阻抗谱基本概述


电化学阻抗谱(EIS)是通过对电化学系统施加小幅度的正弦波电位(或电流)扰动信号,测量系统产生的相应电流(或电位)响应,从而得到阻抗谱图。该谱图反映了电化学系统的阻抗随频率的变化关系,提供了丰富的界面结构和动力学信息。

1.1利用EIS研究一个电化学系统的基本思路

将电化学系统视为一个由电阻(R)、电容(C)、电感(L)等基本元件按串联或并联方式构成的等效电路。通过EIS,可以定量的测定这些元件的大小,利用这些元件的电化学含义,来分析电化学系统的结构和电极过程的性质。


1.2电化学系统的交流阻抗的含义

EIS通过测量这些响应信号,获取电化学系统的阻抗或导纳随频率的变化关系。阻抗和导纳是复数,包含了实部和虚部,分别对应着电化学系统的电阻和电容(或电感)特性。这些复数数据可以绘制成阻抗谱图或导纳谱图,直观地展示电化学系统的阻抗或导纳随频率的变化规律。

EIS技术就是测定不同频率w(f)的扰动信号X和响应信号Y的比值,得到不同频率下阻抗的实部Z’、虚部Z”、模值|Z|和相位角f,然后将这些量绘制成各种形式的曲线,就得到EIS抗谱。常用的电化学阻抗谱有两种:一种叫做奈奎斯特图(Nyquist plot), 一种叫做波特图(Bode plot

奈奎斯特图(Nyquist plot)

波特图(Bode plot)


1.3交流阻抗测量的前提条件

(1)因果性条件(causality)

输出的响应信号只是由输入的扰动信号引起的。


(2)线性条件(linearity)

输出的响应信号与输入的扰动信号之间存在线性关系。电化学系统的电流与电势之间是动力学规律决定的非线性关系,当采用小幅度的正弦波电势信号对系统扰动,电势和电流之间可近似看作呈线性关系。通常作为扰动信号的电势正弦波的幅度在5mV左右,一般不超过10mV。


(3)稳定性条件(stability)

扰动不会引起系统内部结构发生变化,当扰动停止后,系统能够回复到原先的状态。可逆反应容易满足稳定性条件;不可逆电极过程,只要电极表面的变化不是很快,当扰动幅度小,作用时间短,扰动停止后,系统也能够恢复到离原先状态不远的状态,可以近似的认为满足稳定性条件。


02
如何分析电化学阻抗谱?


2.1 等效电路与等效元件


电阻:Nyquist 图上为横轴(实部)上一个点

电容:Nyquist 图上为与纵轴(虚部)重合的一条直线


电阻R和电容C串联的RC电路:Nyquist 图上为与横轴交于R与纵轴平行的一条直线。


电阻R和电容C并联的电路:Nyquist 图上为半径为R/2的半圆。


2.2 电荷传递过程控制的EIS

如果电极过程由电荷传递过程(电化学反应步骤)控制,扩散过程引起的阻抗可以忽略,则电化学系统的等效电路及阻抗如图:

电极过程的控制步骤为电化学反应步骤时,Nyquist图为半圆,据此可以判断电极过程的控制步骤。从Nyquist图上可以直接求出RW和Rct。由半圆顶点的w可求得Cd。

提示:在阻抗谱图中,本应表现为纯电容或纯电阻特性的频率区域,实际上却呈现出一种介于两者之间的行为称为“弥散效应”。这种效应使得阻抗谱图的形状变得更为复杂,不再是简单的半圆或直线,而是呈现出一种“弥散”的特征。

弥散效应的产生与多种因素有关。首先,电极表面的不均匀性、粗糙度以及吸附物的存在都可能影响电极的电容行为,导致弥散效应的出现。其次,电解质溶液中的离子传导性、浓度分布等因素也可能对弥散效应产生影响。此外,测量过程中可能存在的噪声、误差等因素也可能对阻抗谱的形状产生干扰,从而加剧弥散效应。

弥散效应的存在使得对EIS数据的解析变得更为复杂。为了准确理解电化学系统的性质和行为,研究者需要采用更为精细的等效电路模型来描述弥散效应。这些模型通常包含一些额外的元件,如常相位角元件(CPE)等,以更好地拟合实际的阻抗谱数据。

同时,为了减少弥散效应的影响,需要在测量过程中采取一些措施。例如,优化电极的制备工艺,提高电极表面的均匀性和光滑度;选择合适的电解质溶液和浓度,以减少离子传导性和浓度分布对弥散效应的影响;采用高精度的测量设备和方法,以降低噪声和误差对阻抗谱形状的干扰。


2.3电荷传递和扩散过程混合控制的EIS

如果电荷传递动力学不是很快,电荷传递过程和扩散过程共同控制总的电极过程,电化学极化和浓差极化同时存在,则电化学系统的等效电路可简单表示为:


Nyquist图上扩散控制表现为倾斜角π/4(45°)的直线。电极过程由电荷传递和扩散过程共同控制时,在整个频率域内,其Nyquist图是由高频区的一个半圆和低频区的一条45度的直线构成。高频区为电极反应动力学(电荷传递过程)控制,低频区由电极反应的反应物或产物的扩散控制。扩散阻抗的直线可能偏离45°,原因:电极表面很粗糙,以致扩散过程部分相当于球面扩散;除了电极电势外,还有另外一个状态变量,这个变量在测量的过程中引起感抗。

2.4 复杂或特殊的电化学体系

对于复杂或特殊的电化学体系,EIS谱的形状将更加复杂多样。只用电阻、电容等还不足以描述等效电路,需要引入感抗、常相位元件等其它电化学元件。



   来源:新威研选


免责申明
本公众号主张和尊重原创,对于一些网上转载或编辑的经典文章会标明来源出处(无法得知原创作者的除外),文章版权归属于原作者所有。本公众号旨在知识分享及学习交流,若认为侵权则请联系小编删除。




言质有锂,您身边的学习好帮手!本期重点推荐下列书目,以供热爱质量及锂电行业的伙伴们学习参考。在此,预祝大家早日步入职场巅峰,成为行业顶流。











往期精彩内容推荐


教你如何在“志言质语”号内快速获取干货?

好消息|不花钱学习六西格玛,关注他教会你!

一文搞懂最新六大工具(APQP、FMEA、MSA、SPC、PPAP、CP)。附思维导图!

干货|浅谈锂电企业的水分控制及预防

锂离子电池行业常用中英文对照汇总

锂电配料工序常见的主要异常及一般处理措施

浅析锂离子电池合浆工艺流程及品质管控

锂离子电池的常见不良失效分析系列-高内阻

锂离子电池不良失效分析系列-充高放低

锂离子电池不良失效分析系列-低容量

锂离子电池常见不良失效分析系列-低电压

锂离子电池的不良失效分析系列-厚度超标

锂离子电池不良失效分析系列-循环性能差

锂离子电池不良失效分析系列-压差大

锂离子电池的不良失效分析系列-爆炸

锂离子电池不良失效分析系列-漏液

浅谈锂电行业的工程变更管理

干货|关于锂电企业粉尘的管控及预防

聊聊锂电企业的首件三检该如何做?

六西格玛工具之相关性分析案例分享

干货|方差分析之一般线性模型(GLM)的高效应用

干货|六西格玛工具之回归分析(基于Minitab操作案例讲解)。赶紧get!

干货|残差(Residual)在方差分析(ANOVA)、回归(Regression)分析及实验设计(DOE)中的判读及异常对策

质量管理五大核心工具(APQP/FMEA/MSA/SPC/PPAP))的应用

干货|QCC活动推行方案。请收藏!

SPC改进篇:当前降本是“刚需”,过程分析和改善必不可少!

SPC理论&实战系列之实施篇

SPC理论&实战攻略系列之策划篇

SPC理论及实战攻略系列

六西格玛工具之过程能力分析(正态)

六西格工具之卡方(Chi-square)检验

六西格玛工具之MSA(测量系统分析)知识精华介绍及案例

六西格玛工具之过程能力分析(非正态)

六西格的衡量指标(尺度)

六西格玛工具之抽样大小的选择

干货|六西格(DMAIC)项目改善案例

干货|六西格玛工具之黄金版DOE驾到!

六西格玛工具之多变异图

六西格玛工具之散布图

六西格工具之图形化汇总

六西格玛工具之箱线图

六西格玛工具之鱼骨图

干货|方差分析(ANOVA)系列之平衡方差分析(完整版)

干货|方差分析(ANOVA)系列之单因子方差分析

六西格玛工具之柏拉图

六西格玛工具之正态检验

六西格玛之假设检验

干货|六西格玛工具之响应曲面设计(RSM)。请收藏!

六西格玛工具之SIPOC图

干货|新质量工具-公差区间及案例分享。请收藏!

六西格玛工具之直方图理论及Minitab案例分析详解。赶紧get!!

计数型MSA-Kappa技术的应用(Minitab案例分析详解),请收藏!

干货|正交试验设计的理论及案例分享。请收藏!

干货|六西格玛工具之等方差检验案例分享。请收藏!

干货|六西格玛50种核心工具应用及路径。请珍藏!

一种创新改进工具-标杆分析法(Benchmarking)

干货|世界各地锂离子电池产品认证介绍

上汽通用APQP详解

干货|最新完整版FMEA培训教材。请收藏!

记住这串数字184538,就容易理解PPAP了

干货|六西格方法和工具在项目D(定义)阶段实施中的运用。请收藏!

六西格改善方法论和工具在项目实施中的运用案例分享-测量(M )阶段

六西格改善方法论和工具在项目实施中的运用案例分享-分析(A )阶段

六西格改善方法论和工具在项目实施中的运用案例分享-改善(I )阶段

六西格玛工具在项目实施中的应用-C阶段

六西格玛案例之降低方形电池外观不良率!

六西格玛案例之降低电池水分含量!

六西格玛案例之优化电池烘烤工艺!

六西格玛案例之降低极片颗粒不良率

六西格玛案例之优化电池高温老化工艺!

六西格玛案例之提升电芯设计容量!

六西格玛案例之降低电池低压率!

六西格玛项目之提升涂布面密度过程能力案例分享

六西格玛案例之提高涂布合格率分享!

六西格玛案例之降低电池外观不良率

六西格玛案例之降低电池漏液不良率





言质有锂,您身边的学习好帮手!若公众号免费的、海量资讯还满足不了爱学习及上进的你,那么可以考虑并关注以下知识星球。知识星球-新质能源智库已收集了质量管理的及新能源(含锂电池及材料、钠离子电池、固态电池、光伏电池、储能电池及系统、新能源行业分析及研究报告、以及各类材料和电池标准等)等干货资料1400+。相关内容还在持续更新中;专业质量领域知识星球-质量云也正式起航了,资料信息持续更新中,已收集了质量类的干货资料(含国内外先进及系统化的质量理论、方法和工具、管理体系、六西格玛、标杆企业及优秀企业案例等)150+。欢迎大家的加入!





言质有锂
言质有锂,您身边的学习好帮手!专注于新能源及质量等领域,重在分享、利他、助力、赋能。定期会有质量、六西格玛、体系、认证、新能源汽车、电子、管理、最新质量理论、方法和工具、相关标准等方面的资讯更新和分享。感谢社会各界人士的关注和厚爱!
 最新文章