锂电绝缘耐电压(Hi-pot)测试参数对测试结果的影响!

百科   2024-12-13 15:19   广东  

电芯内部存在短路是引起锂离子电池安全问题的原因之一。针对电池内部短路风险,绝缘耐电压(Hi-pot)测试是一项重要的质量检测筛选手段,广泛应用于锂离子电池生产制造过程中,具有十分重要的作用。

锂离子电池生产制造过程中,通常采用叠片或卷绕方式将正、负极片和隔膜组装在一起,该过程制成的半成品通常被称为裸电芯。隔膜将正负极片间隔开,但隔膜中的孔隙可以允许Li+自由通过。Hi-pot测试主要是检测电芯内部是否存在颗粒异物、隔膜是否存在破损点或极片边缘是否存在严重毛刺等质量问题,一般采用绝缘电阻测量仪进行测试。

为了确保Hi-pot测试有效地检出裸电芯内部可能潜在的短路问题,本文作者重点探究了Hi-pot测试的测试时间、压力和测试电压等关键因素对结果的影响,以期指导生产时设定更有效的测试参数。

1实验

1.1实验设备及原理
实验采用HIOKI5520绝缘电阻测试仪(日本产)。测试开始时,测试仪给裸电芯施加一个电压,该电压持续一段规定的时间后,检测器检测漏电流的电流值并转化为绝缘阻值,根据绝缘阻值是否在设定规定范围内,判断裸电芯正负极之间有无短路。一般测试过程中施加电压的流程见图1。



在一定时间t1内,对裸电芯从0开始加电压,至设定值U;电压U保持一段时间至t2;测试完成,切断测试电压,裸电芯正负极形成的杂散电容短接放电。

1.2实验样品
实验样品采用本公司同一批次制作的常规叠片式裸电芯(308.5mm×102.5mm×9.9mm),标称电压3.2V,额定容量31Ah,正极活性物质为磷酸铁锂,负极活性物质为石墨,隔膜为聚乙烯(PE)基膜。

1.3实验方法
重复测试:采用两种方式对同一批电芯进行Hi-pot测试,测试条件为延迟时间1.5s,测试时间4.0s,测试压力200N,测试电压250V。方式1:测试后,不进行正负极短接处理,连续测试,两次测试时间间隔3s以内;方式2:测试后将正负极进行短接处理,再进行重复测试。


不同延迟时间:当前所使用的测试设备升压到设置电压U的时间t1为0.5s,延迟时间设置的一般要求需要大于该升压时间,t2为测试时间。为避免测试时间过短对不同延迟时间测试结果的影响,测试时间采用相对充足的10.5s,然后采用1~10s的延迟时间进行测试。测试压力为200N,测试电压为250V。

不同测试时间:为避免延迟时间过短对不同测试时间测试结果的影响,采用1.5s和2.5s两种延迟时间进行测试,测试时间为3~10s。测试压力为200N,测试电压为250V。

不同测试压力:受限于设备所能提供的测试压力最大为600N,选取200N、450N和600N等3个压力参数进行对比测试。延迟时间为1.5s、测试时间为4.0s、测试电压为250V。
不同测试电压:绝缘电阻测试设备的测试电压为0~1000V,在100V、250V、500V和1000V等4个电压参数下进行对比测试。延迟时间为1.5s、测试时间为4.0s、测试压力为200N。

测试压力和测试电压对Hi-pot测试不良(NG)品检出率影响的测试方法:实际生产中,Hi-pot测试NG电芯比例很低,为了避免大批量电芯实验,首先人为制造了10只含金属异物的缺陷裸电芯样件,异物为焊接工序负极铜金属焊渣,焊渣形貌不一,尺寸为50~200μm。异物引入方式为用镊子向裸电芯第5层正负极片的中放入3颗负极铜金属焊渣。针对10只人为NG异物电芯,对比了250V电压下,200N和600N不同压力下的NG电芯检出率;对比了450N压力下,250V、500V和1000V不同电压下的NG电芯检出率。最后,选取250V、450N,250V、600N,500V、450N等3种测试条件,在生产线进行了批量验证。

2结果与讨论

2.1重复测试
采用两种方式对同一批电芯进行Hi-pot重复测试,两种方式的测试结果见图2。



从图2可知,方式1重复测试,随测试次数的增加,结果逐渐增大,8次连续测试后,结果趋于相对稳定;方式2重复测试,结果相对稳定。这是因为:正极/隔膜/负极构成的杂散电容在测试时进行了充电,测试后,若不进行正负极短接,仍会残留电量;重复测试时,因极化导致的极化电流减小,测得的结果绝缘阻值会变大;正负极短接后,可以放掉首次测试时充入的电量,因此测试结果相对稳定。将电芯放置更长时间让其缓慢放电,也可以使重复测试结果保持相对稳定。

2.2测试时间
Hi-pot测试的时间设置,主要包括测试时间和延迟时间。分别验证两个时间的变化对结果的影响。
首先,固定测试时间为10.5s,然后,调整延迟时间为1~10s,测试结果见图3。



从图3可知,在固定的10.5s测试时间条件下,延迟时间从1s增加到10s,耐电压绝缘阻值基本保持稳定,延迟时间对测试结果影响较小。
为验证测试时间对Hi-pot测试结果的影响,固定延迟时间为1.5s、2.5s,调整测试时间,测试结果见图4。



从图4可知,在固定的延迟时间下,随测试时间的延长,测试结果逐渐增大。这是因为:在Hi-pot测试过程中,设备检测到的电流主要包括电容电流、极化电流和漏电流等,电压达到最大值后,电容电流快速消失;剩余极化电流和漏电流,随着测试时间增加,极化电流逐渐减小,漏电流基本保持不变,绝缘阻抗结果也就随之逐渐增大。
相同测试时间下不同延迟时间的绝缘阻抗见表1。



从表1可知,在相同的测试时间下,2.5s和1.5s延迟时间下的绝缘阻抗结果接近。该数据可以同样印证,延迟时间对测试结果的影响较小。

2.3测试压力
Hi-pot测试时,对裸电芯施加一定的外部压力,能使正、负极和隔膜的接触更紧密,让内部可能存在的异物挤压隔膜,以便更容易地检测出存在异物。采用相同的测试电压(250V)将裸电芯放置于不同的测试压力下,测试结果见图5。



从图5可知,在测试压力为200~600N时,提升测试压力对测试结果的影响较小。

2.4测试电压
裸电芯的耐电压击穿能力与隔膜本身的耐电压强度有关,隔膜越薄,耐电压强度越低。测试电压应根据隔膜的耐电压强度设定,测试电压最高不能高于隔膜本征击穿电压,否则会对正常电芯的隔膜造成损坏。绝缘电阻测试设备的测试电压为0~1000V,当前行业内裸电芯Hi-pot测试常规采用的测试电压为250V。实验在相同的测试压力(450N)下,分别测试100V、250V、500V和1000V下的绝缘阻值,结果见图6。



从图6可知,随着测试电压的升高,绝缘阻值呈现逐渐减小的趋势,电压升高到1000V,也未发生击穿。这说明,当前实验样品使用的隔膜耐击穿电压高于1000V。

2.5测试压力和测试电压对Hi-pot测试检出率的影响
测试压力试验表明,测试压力在200~600N时对测试结果的影响较小,但根据理论分析,如果正负极之间存在一定尺寸的异物,增大测试压力,正负极之间的间距减小,隔膜被异物挤压,正负极之间的隔膜被击穿,电压会下降。如果加载相同的电压,漏电流可能增大超过设定的警报值,从而更有效识别出异物。测试电压也是如此。异物挤压隔膜,增大测试电压,可以使低电压下不足以击穿隔膜的异物,在高电压下发生击穿,表现出较大的漏电流,从而更有效地识别出异物。为了研究测试压力和测试电压对Hi-pot测试检出率的影响,人为向裸电芯内部添加少量金属异物,制作NG电芯,通过对比不同测试压力和测试电压下的测试结果(见表2),评估增大测试压力和测试电压对NG裸电芯检出情况的影响。



从表2可知,当测试电压为250V时,在200N和600N的测试压力下,NG电芯检出率无明显区别。当测试压力为450N时,在250V的测试电压下,10只人为异物NG电芯检测出5只;当测试电压升高到500V和1000V时,都检测出6只。这表明,增大测试电压可以提高NG裸电芯检出率。有一定数量的添加少量金属异物的电芯无法通过Hi-pot测试检测出来,原因是:添加金属异物的颗粒大小和形貌不同,若异物颗粒过小或形貌偏片状,测试时异物对隔膜的挤压或损伤较小,无法体现出较大的漏电流。

基于上述人为NG电芯的实验结果,为了进一步验证测试压力和测试电压的影响,分别进行放大批量测试实验,考察测试压力和测试电压对正常批量电芯检出率的影响,对相邻时间点生产的同一批次电芯进行测试对比,结果见表3。


 


从表3可知,测试压力由450N提高到600N,NG率变化不大;测试电压由250V提高到500V,NG率由0.13%提高到0.31%,明显增大。假设该时间段该批次电芯的异物控制水平相近,测试电压增大,NG电芯检出率明显提高,Hi-pot测试检出的NG裸电芯拆解后,在隔膜上可发现金属异物导致的击穿点。


3结论


综上所述,Hi-pot测试时间对绝缘阻值大小有影响,测试时间越长,检测出来的电流越小,测试结果越大;延迟时间对测试结果影响很小,根据实际生产来确定测试时间,建议延时时间至少为0.5s,测试时间至少为1.0s。实验对比了压力为200~600N时测试电压对结果的影响,结果显示,该压力范围内压力对测试结果的影响很小;测试电压是影响Hi-pot测试的关键因素。当电压为100~1000V时,测试绝缘阻值随测试电压的增大而减小,电压提高,可提高不良电芯的检出率,需要设定合理的电压来保证测试的有效性,但不能无限制的增大电压,否则会导致正常电芯被误判为不良品。建议测试电压以不超过隔膜本征击穿电压的50%为宜。



来源:电动学堂





免责申明
本公众号主张和尊重原创,对于一些网上转载或编辑的经典文章会标明来源出处(无法得知原创作者的除外),文章版权归属于原作者所有。本公众号旨在知识分享及学习交流,若认为侵权则请联系小编删除。






言质有锂,您身边的学习好帮手!本期重点推荐下列书目,以供热爱质量及锂电行业的伙伴们学习参考。在此,预祝大家早日步入职场巅峰,成为行业顶流。






往期精彩内容推荐


教你如何在“志言质语”号内快速获取干货?

好消息|不花钱学习六西格玛,关注他教会你!

一文搞懂最新六大工具(APQP、FMEA、MSA、SPC、PPAP、CP)。附思维导图!

干货|浅谈锂电企业的水分控制及预防

锂离子电池行业常用中英文对照汇总

锂电配料工序常见的主要异常及一般处理措施

浅析锂离子电池合浆工艺流程及品质管控

锂离子电池的常见不良失效分析系列-高内阻

锂离子电池不良失效分析系列-充高放低

锂离子电池不良失效分析系列-低容量

锂离子电池常见不良失效分析系列-低电压

锂离子电池的不良失效分析系列-厚度超标

锂离子电池不良失效分析系列-循环性能差

锂离子电池不良失效分析系列-压差大

锂离子电池的不良失效分析系列-爆炸

锂离子电池不良失效分析系列-漏液

浅谈锂电行业的工程变更管理

干货|关于锂电企业粉尘的管控及预防

聊聊锂电企业的首件三检该如何做?

六西格玛工具之相关性分析案例分享

干货|方差分析之一般线性模型(GLM)的高效应用

干货|六西格玛工具之回归分析(基于Minitab操作案例讲解)。赶紧get!

干货|残差(Residual)在方差分析(ANOVA)、回归(Regression)分析及实验设计(DOE)中的判读及异常对策

质量管理五大核心工具(APQP/FMEA/MSA/SPC/PPAP))的应用

干货|QCC活动推行方案。请收藏!

SPC改进篇:当前降本是“刚需”,过程分析和改善必不可少!

SPC理论&实战系列之实施篇

SPC理论&实战攻略系列之策划篇

SPC理论及实战攻略系列

六西格玛工具之过程能力分析(正态)

六西格工具之卡方(Chi-square)检验

六西格玛工具之MSA(测量系统分析)知识精华介绍及案例

六西格玛工具之过程能力分析(非正态)

六西格的衡量指标(尺度)

六西格玛工具之抽样大小的选择

干货|六西格(DMAIC)项目改善案例

干货|六西格玛工具之黄金版DOE驾到!

六西格玛工具之多变异图

六西格玛工具之散布图

六西格工具之图形化汇总

六西格玛工具之箱线图

六西格玛工具之鱼骨图

干货|方差分析(ANOVA)系列之平衡方差分析(完整版)

干货|方差分析(ANOVA)系列之单因子方差分析

六西格玛工具之柏拉图

六西格玛工具之正态检验

六西格玛之假设检验

干货|六西格玛工具之响应曲面设计(RSM)。请收藏!

六西格玛工具之SIPOC图

干货|新质量工具-公差区间及案例分享。请收藏!

六西格玛工具之直方图理论及Minitab案例分析详解。赶紧get!!

计数型MSA-Kappa技术的应用(Minitab案例分析详解),请收藏!

干货|正交试验设计的理论及案例分享。请收藏!

干货|六西格玛工具之等方差检验案例分享。请收藏!

干货|六西格玛50种核心工具应用及路径。请珍藏!

一种创新改进工具-标杆分析法(Benchmarking)

干货|世界各地锂离子电池产品认证介绍

上汽通用APQP详解

干货|最新完整版FMEA培训教材。请收藏!

记住这串数字184538,就容易理解PPAP了

干货|六西格方法和工具在项目D(定义)阶段实施中的运用。请收藏!

六西格改善方法论和工具在项目实施中的运用案例分享-测量(M )阶段

六西格改善方法论和工具在项目实施中的运用案例分享-分析(A )阶段

六西格改善方法论和工具在项目实施中的运用案例分享-改善(I )阶段

六西格玛工具在项目实施中的应用-C阶段

六西格玛案例之降低方形电池外观不良率!

六西格玛案例之降低电池水分含量!

六西格玛案例之优化电池烘烤工艺!

六西格玛案例之降低极片颗粒不良率

六西格玛案例之优化电池高温老化工艺!

六西格玛案例之提升电芯设计容量!

六西格玛案例之降低电池低压率!

六西格玛项目之提升涂布面密度过程能力案例分享

六西格玛案例之提高涂布合格率分享!

六西格玛案例之降低电池外观不良率

六西格玛案例之降低电池漏液不良率





言质有锂,您身边的学习好帮手!若公众号免费的、海量资讯还满足不了爱学习及上进的你,那么可以考虑并关注以下知识星球。知识星球-新质能源智库已收集了质量管理的及新能源(含锂电池及材料、钠离子电池、固态电池、光伏电池、储能电池及系统、新能源行业分析及研究报告、以及各类材料和电池标准等)等干货资料1400+。相关内容还在持续更新中;专业质量领域知识星球-质量云也正式起航了,资料信息持续更新中,已收集了质量类的干货资料(含国内外先进及系统化的质量理论、方法和工具、管理体系、六西格玛、标杆企业及优秀企业案例等)150+。欢迎大家的加入!





言质有锂
言质有锂,您身边的学习好帮手!专注于新能源及质量等领域,重在分享、利他、助力、赋能。定期会有质量、六西格玛、体系、认证、新能源汽车、电子、管理、最新质量理论、方法和工具、相关标准等方面的资讯更新和分享。感谢社会各界人士的关注和厚爱!
 最新文章