重磅!特斯拉用CATL宁德方形LFP电池拆解

百科   2024-12-08 10:40   广东  


对于MODEL 3采用的电池组,根据公开信息而言,电池组的总能量为55 kWh,由两个25串1并和两个28串1并的电池模块组成,以106串1 并的方式配置成电池包。电池容量为161.5Ah。由此可以推断特斯拉采用的是宁德时代161Ah的方形电芯。当然宁德时代也可能专门为特斯拉开发一款电芯。不过下面我们仍将围绕宁德161Ah电芯进行拆解分析,毕竟一个公司的工艺方法会保持一致。

宁德时代LFP6228082-161Ah电池规格书
标称容量:161 Ah
额定电压:3.2 V
内阻:≤0.4mΩ
重量:约 3.1Kg
外形尺寸如图1所示
         

 

    

图1  宁德时代LFP6228082-161Ah电池外形尺寸 

图2  拆解过程中拍摄图像示例         

 

电池结构
经过拆解,可以看出该款电信芯采用卷绕技术而成,非采用目前比较火的叠片技术。缠绕圈数为40圈。其中铜箔的厚度为(5±1)μm,铝箔的厚度为(12±1)μm,两个卷芯平行并联连接,同侧出极耳。正极极耳片厚度厚度为(975±5)µm,负极极耳片厚度为(775±5)µm。再讲极耳焊接在正负极引出极柱上。两个卷芯包裹绝缘膜后入壳(图3e),最后顶盖和壳体焊接(图3f),注液之后,封口焊接(图5e)。
  那为什么该款电信会采用两个平行卷芯的结构进行设计呢。大家都知道对于卷绕来说,层数越多,产品越厚,电芯卷的R角越大,这就会造成电芯有效空间未得到充分利用,故而对于大型的方块电芯,一般都是采用双卷芯结构进行设计               

 

         

 

    

    

 

改款电芯采用的还是传统的方形电芯设计,极柱于泄压阀位于电芯的顶端,而不是宁德时代供给小米的泄压阀位于电芯下部,失控时火焰超地喷射的机构。电芯引出极耳与极柱使用激光束焊接工艺以圆形焊接轨迹连接(图5a和5b),熔深为(1690±50)µm,接触面为(2610±10)µm。焊接仍采用回形焊接的形式,正负极段子的焊接熔深也根据材料的不同,采用了不同的工艺参数。负极端子的焊接深度为(1000±50)μm(见图5c),正极端子的焊接深度为(1750 ±50)μm(见图5d)。
   电芯的泄压阀采用的是传统铝膜,厚度为(185±5)µm厚使用激光将铝膜焊接顶到盖上(图5e)。在最薄的点处厚度为(40±5)μm    

图5  顶盖截面形貌:(a)正极极柱中心顶盖截面,(b)负极极柱中心顶盖截面,(c)正极极耳与顶盖焊接,(d)负极极耳与顶盖焊接,(e)泄压阀密封焊缝  

 

该款电池采用的是磷酸铁锂正极,标准电压为3.2V,额定容量为161.5Ah,根据前面得到的重量数据,重量能量密度为163Wh/kg,同时该款电芯内部体积1.4L体积能量密度366Wh/L。   

 

       

 

电极设计
根据拆解结果,该款电芯的正极极片长22m,负极长22.6m,比正极长0.6m,负极涂层全部包覆住正极,隔膜由于加工原因,隔膜总长23.7m,比负极更长,可以完全包裹电芯正负极。宽度方向上,正极67mm,负极70mm,负极两侧比正极多1.5mm,隔膜宽75mm,隔膜两侧比负极多出2.5mm。这样的设计总的而言就是为了让正极的锂金属可以完全嵌入到负极石墨中,防止在进行快充时,由于锂单质未能及时嵌入到石墨中,刺破隔膜从而发生热失控    
就箔材的厚度尔雅,其中铜箔采用了5µm,铝箔采用厚度为12µm,并且铝集流体在电极边缘涂有27µm的陶瓷层。图6详细显示单面涂层极片的厚度和面密度在长度方向上的分布。正极单面涂层的平均厚度为94 μm(不含铝箔),负极单面涂层的平均厚度为71 μm(不含铜箔)正极的平均负载量测定为22.6 mg/cm2 ,负极的平均负载量测定为10.7 mg/cm2 。检测过程中的轻微变化或归因于不均匀分布的电解质盐残留物。根据所测量的电极参数,估算正极的涂层密度为2.4g/cm3,负极的涂层密度为1.5g/cm3。根据电极的材料组成计算出电极孔隙率约为32%。        

 

假设电极涂层中,活性材料含量为约95%(该值取决于材料体系,配方设计和各个电极组分的密度等,可能出错),假设正极材料克容量为160 mAh/g,负极材料克容量为360 mAh/g(实际发挥容量也没有这么高),根据面密度计算得到正、负极单面涂层的面容量分别为3.44、3.66 mAh/cm2。         

 

但是,如果正面容量为3.44 mAh/cm2,一个卷芯的正极极片双面涂层的面积为22(m)*67(mm)*2=29480(cm2),则一个卷芯容量为3.44(mAh/cm2) *29480(cm2)= 101.3(Ah),那么内置两个卷芯的电池设计容量应该为202 Ah。         

 

根据电池容量161.5 Ah计算正极面容量,则有:161.5(Ah)÷2÷29480(cm2)= 2.74(mAh/cm2)。         

 

    
     

 

图6  单面涂层的厚度(不含箔材)和面密度(不含箔材)        

 

材料表征     

 

负极由尺寸约为10µm的天然片状石墨颗粒组成(见图5a和b),最有可能是天然石墨。EDX检测到90.8%的碳和7.2%的氧化物,而所有其他元素都低于1%,包括来自电解质的氟残留物。没有检测到硅的痕迹。负极表面未检测到明显的降解迹象,例如锂镀层或颗粒裂纹。             

 

正极是球形的纳米尺寸的颗粒,其直径双峰分布,其中较小的颗粒直径约为300 nm,较大的颗粒直径约为1µm。EDX分析表明,由铁(11.4%)、磷(13.5%)和氧(59.26%)的原子重量比,确定阴极活性材料为LFP。结果显示,高比例的碳添加剂(8.6%)覆盖整个电极表面,可能是LFP颗粒的碳涂层或者碳导电剂。碳涂层和LFP颗粒尺寸减小是解决LFP低电子电导率的方法。此外,研究表明,具有高表面积和小粒度的LFP材料具有更好的容量保持率,并且不太容易发生颗粒破裂。在正极上也没有发现颗粒裂纹或其他明显的降解迹象。        

 

正极涂层的边缘,可见5 mm宽的白色陶瓷层(图7 h)。EDX显示,该层由颗粒尺寸约为20 nm的长方体状颗粒组成,成分是以2:3的比例的铝和氧,由此可知即为Al2O3颗粒
图7  负极表面在(a)低和(B)高放大倍率下的SEM图像,以及正极表面在(c)低和(d)高放大倍率下的SEM图像。正极集流体涂层(e)显示出以2:3的比例的铝(f)和氧(g)。(h)显示正极的涂层边缘的Al2O3涂层
         

 

电解质的ICP-OES测试结果如下表所示,结果表明,电解液锂盐为LiPF6。溶剂及其质量比如图8d所示。    
         

 

电化学性能      

 

动拆解的极片中裁切样品,使用丙酮去除一侧涂层,形成单面涂层的极片,组装纽扣电池,C/10倍率测得电极放电面容量为(2.69±0.04)mAh/cm2,根据电极面积计算电池的容量为161.5 Ah,与电池实际测试结果一致      

 

    
图8  组装纽扣电池,采用两种不同电解液(拆解电池残留的Tesla和对比电解液LP572)的电池0.1 C至3 C电化学性能:(a)放电,(b)充电,(c)两种电解液电导率,(d)Tesla电解液的溶剂质量比
         

 

3电极电池的阳极、阴极和全电池的阻抗谱如图9a和b所示,负极阻抗的大小大于正极阻抗的大小。因此,全电池阻抗谱由负极主导。阳极、阴极和全电池的伪开路电压(pOCV)曲线分别列入图9 c,尽管施加了C/50的非常低的电流,但是充电和放电曲线不重叠(图9d)。阴极的特征电位平台约3.4V,确认阴极化学成分为LFP。阳极分别在约210 mV、120 mV和85 mV处显示三个特征电位平台,这些电位分布是纯石墨的特征,表明阳极不含硅。  
图9  在50%SOC和25°C下记录的3电极电池的半电池和全电池阻抗谱以及电势曲线
总之,本文拆解分析了特斯拉Model 3中的161.5 Ah方形扁卷绕硬壳LFP电池,将电池分解到材料水平,跟踪了工艺步骤和制造特性。测得电池163 Wh/kg的比能量和366 Wh/L的体积能量密度电芯内部呈现低空隙体积6.4%以及铜和铝的集流体厚度分别为5µm和12µm。果冻卷芯以蝶形设计连接到顶盖上,为焊接过程提供了方便。电池盖的横截面和显微镜分析显示应用了多种激光焊接工艺,提供了高机械稳定性和气密性。电极的涂层显示出高度的均匀性,厚度波动小于2μm。扫描电子显微镜图像揭示了纯石墨阳极和LFP阴极内的双峰颗粒分布,其中正极的边缘覆盖有Al2O3陶瓷层。电化学分析表明,与普通LP572电解质相比,电池固有电解质的性能更好。
参考文献:Sandro Stock, Jan Hagemeister, Sophie Grabmann, Johannes Kriegler, Josef Keilhofer, Manuel Ank, Jonas L.S. Dickmanns, Markus Schreiber, Fabian Konwitschny, Nikolaos Wassiliadis, Markus Lienkamp, Rüdiger Daub, Cell teardown and characterization of an automotive prismatic LFP battery, Electrochimica Acta, Volume 471, 2023, 143341


来源:锂电派

免责申明
本公众号主张和尊重原创,对于一些网上转载或编辑的经典文章会标明来源出处(无法得知原创作者的除外),文章版权归属于原作者所有。本公众号旨在知识分享及学习交流,若认为侵权则请联系小编删除。







往期精彩内容推荐


教你如何在“志言质语”号内快速获取干货?

好消息|不花钱学习六西格玛,关注他教会你!

一文搞懂最新六大工具(APQP、FMEA、MSA、SPC、PPAP、CP)。附思维导图!

干货|浅谈锂电企业的水分控制及预防

锂离子电池行业常用中英文对照汇总

锂电配料工序常见的主要异常及一般处理措施

浅析锂离子电池合浆工艺流程及品质管控

锂离子电池的常见不良失效分析系列-高内阻

锂离子电池不良失效分析系列-充高放低

锂离子电池不良失效分析系列-低容量

锂离子电池常见不良失效分析系列-低电压

锂离子电池的不良失效分析系列-厚度超标

锂离子电池不良失效分析系列-循环性能差

锂离子电池不良失效分析系列-压差大

锂离子电池的不良失效分析系列-爆炸

锂离子电池不良失效分析系列-漏液

浅谈锂电行业的工程变更管理

干货|关于锂电企业粉尘的管控及预防

聊聊锂电企业的首件三检该如何做?

六西格玛工具之相关性分析案例分享

干货|方差分析之一般线性模型(GLM)的高效应用

干货|六西格玛工具之回归分析(基于Minitab操作案例讲解)。赶紧get!

干货|残差(Residual)在方差分析(ANOVA)、回归(Regression)分析及实验设计(DOE)中的判读及异常对策

质量管理五大核心工具(APQP/FMEA/MSA/SPC/PPAP))的应用

干货|QCC活动推行方案。请收藏!

SPC改进篇:当前降本是“刚需”,过程分析和改善必不可少!

SPC理论&实战系列之实施篇

SPC理论&实战攻略系列之策划篇

SPC理论及实战攻略系列

六西格玛工具之过程能力分析(正态)

六西格工具之卡方(Chi-square)检验

六西格玛工具之MSA(测量系统分析)知识精华介绍及案例

六西格玛工具之过程能力分析(非正态)

六西格的衡量指标(尺度)

六西格玛工具之抽样大小的选择

干货|六西格(DMAIC)项目改善案例

干货|六西格玛工具之黄金版DOE驾到!

六西格玛工具之多变异图

六西格玛工具之散布图

六西格工具之图形化汇总

六西格玛工具之箱线图

六西格玛工具之鱼骨图

干货|方差分析(ANOVA)系列之平衡方差分析(完整版)

干货|方差分析(ANOVA)系列之单因子方差分析

六西格玛工具之柏拉图

六西格玛工具之正态检验

六西格玛之假设检验

干货|六西格玛工具之响应曲面设计(RSM)。请收藏!

六西格玛工具之SIPOC图

干货|新质量工具-公差区间及案例分享。请收藏!

六西格玛工具之直方图理论及Minitab案例分析详解。赶紧get!!

计数型MSA-Kappa技术的应用(Minitab案例分析详解),请收藏!

干货|正交试验设计的理论及案例分享。请收藏!

干货|六西格玛工具之等方差检验案例分享。请收藏!

干货|六西格玛50种核心工具应用及路径。请珍藏!

一种创新改进工具-标杆分析法(Benchmarking)

干货|世界各地锂离子电池产品认证介绍

上汽通用APQP详解

干货|最新完整版FMEA培训教材。请收藏!

记住这串数字184538,就容易理解PPAP了

干货|六西格方法和工具在项目D(定义)阶段实施中的运用。请收藏!

六西格改善方法论和工具在项目实施中的运用案例分享-测量(M )阶段

六西格改善方法论和工具在项目实施中的运用案例分享-分析(A )阶段

六西格改善方法论和工具在项目实施中的运用案例分享-改善(I )阶段

六西格玛工具在项目实施中的应用-C阶段

六西格玛案例之降低方形电池外观不良率!

六西格玛案例之降低电池水分含量!

六西格玛案例之优化电池烘烤工艺!

六西格玛案例之降低极片颗粒不良率

六西格玛案例之优化电池高温老化工艺!

六西格玛案例之提升电芯设计容量!

六西格玛案例之降低电池低压率!

六西格玛项目之提升涂布面密度过程能力案例分享

六西格玛案例之提高涂布合格率分享!

六西格玛案例之降低电池外观不良率

六西格玛案例之降低电池漏液不良率





言质有锂,您身边的学习好帮手!若公众号免费的、海量资讯还满足不了爱学习及上进的你,那么可以考虑并关注以下知识星球。知识星球-新质能源智库已收集了质量管理的及新能源(含锂电池及材料、钠离子电池、固态电池、光伏电池、储能电池及系统、新能源行业分析及研究报告、以及各类材料和电池标准等)等干货资料1400+。相关内容还在持续更新中;专业质量领域知识星球-质量云也正式起航了,资料信息持续更新中,已收集了质量类的干货资料(含国内外先进及系统化的质量理论、方法和工具、管理体系、六西格玛、标杆企业及优秀企业案例等)150+。欢迎大家的加入!





言质有锂
言质有锂,您身边的学习好帮手!专注于新能源及质量等领域,重在分享、利他、助力、赋能。定期会有质量、六西格玛、体系、认证、新能源汽车、电子、管理、最新质量理论、方法和工具、相关标准等方面的资讯更新和分享。感谢社会各界人士的关注和厚爱!
 最新文章