点击蓝字
关注我们
一、我们需要储能
在中国宁德“2023年世界储能大会”上,中国华能集团有限公司董事长温枢刚说:“与传统电力系统相比,新型电力系统中新能源比重大幅提升,电力系统的运行机理和平衡机制面临重大转变。电力系统调控运营模式由‘源随荷动’逐步转向‘源网荷储’智能互动,运行特征向多元协同转变。由此,储能成为清洁能源替代进程中不可或缺的一环。”
二、中国需要氢储能
中国科学院院士、清华大学教授欧阳明高指出:氢储能可以实现能量季节性转移,未来10%的可再生能源要通过长时储能解决,主体就要氢储能。10%是多少呢?到2060年,中国需要1.5万亿度电的长时储能, 2060年中国全社会用电量大概是17万亿度,占比9%。
氢储能会是今后的主流储能方式,因为储能的规模和周期都是压缩空气和抽水蓄能无法相比的,电化学储能就更不行了。
制氢将成为中国氢能的优势,氢储运仍是薄弱环节,但是有很多选择。实际上,储氢是氢能相比电池最大的优势。当下,电池储电至少需要1000元/度,1kg氢需要33度电,这些电用电池储存需要3.3万元。1kg氢如果用一个10MPa的高压容器储存,最多需要100多块钱,差1~3个数量级。储氢贵是指车端,车下储氢跟电池储电相比要便宜几个数量级。
“从能源转型来说,最清洁的能源无可置疑是氢能源。因为它充分燃烧热值非常高,是真正的清洁能源,并且可以通过各种风光电以及可再生能源制得。但是氢能产业大规模应用面临的一个挑战,便是如何安全地存储和输运。”中国工程院院士、上海大学副校长吴明红在“2023世界储能大会”上分享了其在化学储能路径上的探索。
吴明红院士团队通过对“氨储氢”技术的攻关,研发出“氢转成氨”过程中的先进催化材料工艺,解决了在温和条件下高效稳定的氨氢转化难题,从而让氢能实现了高安全性、易储运,相关成果引起了国内外同行的高度关注,为储能路径提供了全新思路。
下面,我们来看看化学储氢的技术路线。
三、化学储氢的技术路线
化学储氢技术是利用储氢介质在一定条件下能与氢气反应生成稳定化合物,再通过改变条件实现放氢的技术,主要包括有机液体储氢、液氨储氢、配位氢化物储氢、无机物储氢与甲醇储氢。
1、有机液体储氢:在安全性、储氢密度、储运效率上极具优势
有机液体储氢技术基于不饱和液体有机物在催化剂作用下进行加氢反应,生成稳定化合物,当需要氢气时再进行脱氢反应。常用的不饱和液体有机物及其性能如表所示。
与常见的高压气态储氢、低温液态储氢相比,有机液态液体储氢具有以下特点:(1)反应过程可逆,储氢密度高;(2)氢载体储运安全方便,适合长距离运输;(3)可利用先有汽油输送管道、加油站等基础设施。
液体有机储氢技术目前处于从实验室向工业化生产过度阶段。液态有机物储氢未来能否成为氢气运输主流方式,取决于:(1)技术迭代速度能否快于其他储氢手段;(2)工业化和市场化速度能否快于低温液态储氢成本降低速度。
2、液氨储氢:在长距离氢能储运中有一定优势
氢与氮气在催化剂作用下合成液氨,以液氨形式储运。液氨在常压、约400 ℃下分解放氢。利用途径如图所示:
相比于低温液态储氢技术要求的极低氢液化温度-253℃,氨在一个大气压下的液化温度-33℃高得多,“氢-氨-氢”方式耗能、实现难度及运输难度相对更低。同时,液氨储氢中体积储氢密度比液氢高1.7倍,更远高于长管拖车式气态储氢技术。该技术在长距离氢能储运中有一定优势。然而,液氨储氢的也具有较多劣势。液氨具有较强腐蚀性与毒性,储运过程中对设备、人体、环境均有潜在危害风险;合成氨工艺在我国较为成熟,但过程转换中存在一定比例损耗;合成氨与氨分解的设备与终端产业设备仍有待集成。
3、甲醇储氢能量密度高
绿色甲醇能量密度高,是理想的液体能源储运方式。利用可再生能源发电制取绿氢,再和二氧化碳结合生成方便储运的绿色甲醇,是通向零碳排放的重要路径。”甲醇储氢技术是指将一氧化碳与氢气在一定条件下反应生成液体甲醇,作为氢能的载体进行利用。在河北张家口已建成一个小型的撬装示范站,就是利用甲醇在站内制氢,再给燃料电池车加氢使用。
4、配位氢化物储氢安全性好
化学储氢因其在存储密度、能效及安全度性等方面颇具技术优势而备受关注,具有较高重量储氢密度的配位氰化物是当前化学储氢材料研究中的热点之一。配位氢化物储氢利用碱金属与氢气反应生成离子型氢化物,在一定条件下,分解出氢气。下表为常见的配位氢化物的储氢性质。
目前,作为一种极具前景的储氢材料,研究人员还在努力探索改善其低温放氢性能的方法。同时,也在针对这类材料的回收、循环、再利用做进一步深入研究。
5、无机物化合物储氢成本高
无机物储氢材料基于碳酸氢盐与甲酸盐之间相互转化,实现储氢、放氢。反应一般以Pd或PdO作为催化剂,吸湿性强的活性炭作载体,因为Pd这种金属钯也是价格昂贵,数量稀少的存在,其价格甚至不比铂金要低多少。因此这种材料储氢的成本是相当贵的。作储氢材料时,氢气质量密度可达2%。该方法便于大量的储存和运输,安全性好,但储氢量和可逆性都不是很理想。
各种类型储能的协同发展,将在多个时间尺度内对电量进行平衡,将成为提高系统对新能源消纳能力的重要一环。毫无疑问,氢气储能是基于大尺寸的能源平衡选择。