更多请回复“互助”进入相关群聊。
原文信息:
Identifying generalizable equilibrium pricing strategies for charging service providers in coupled power and transportation networks
原文链接:
https://www.sciencedirect.com/science/article/pii/S2666792423000306
Highlights
(1) 针对电力交通耦合环境下的充电市场均衡定价问题,提出了一种基于增强多智能体近端策略优化的多智能体强化学习算法,通过融合注意力机制减轻环境非静态性、维度和信息隐私对决策的影响;
(2) 提出一种顺序更新训练算法,保证不确定性环境中的智能体单调策略改进;
(3) 通过算例对比证明了所述方法在提升智能体策略均衡度、训练效率上的有效性。
(4) 基于所述方法,分析了竞争性充电市场对于缩减用户用能成本、提升新能源消纳率、降低电网运行成本的效果。
Research gap
在完全竞争市场条件下,电力-交通交通网络的充电商定价为非合作博弈问题,牵涉电力、交通网络运行状态、充电商资源条件、用户出行特征等多种不确定性因素。已有市场均衡分析方法通常基于Karush-Kuhn-Tucker条件转化市场双层模型进行求解,难以处理非凸运行约束、隐私保护以及复杂不确定性,难以应用到复杂的竞争性充电市场均衡分析及决策中。
Abstract
Transportation electrification, involving large-scale integration of electric vehicles (EV) and fast charging stations (FCS), plays a critical role for global energy transition and decarbonization. In this context, coordination of EV routing and charging activities through suitably designed price signals constitutes an imperative step in secure and economic operation of the coupled power-transportation networks (CPTN). This work examines the non-cooperative pricing competition between self-interested EV charging service providers (CSP), taken into account the complex interactions between CSPs' pricing strategies, EV users' decisions and the operation of CPTN. The modeling of CPTN environment captures the prominent type of uncertainties stemming from the gasoline vehicle and EV origin-destination travel demands and their cost elasticity, EV initial state-of-charge and renewable energy sources (RES). An enhanced multi-agent proximal policy optimization method is developed to solve the pricing game, which incorporates an attention mechanism to selectively incorporate agents' representative information to mitigate the environmental non-stationarity without raising dimensionality challenge, while safeguarding the commercial confidentiality of CSP agents. To foster more efficient learning coordination in the highly uncertain CPTN environment, a sequential update scheme is also developed to achieve monotonic policy improvement for CSP agents. Case studies on an illustrative and a large-scale test system reveal that the proposed method facilitates sufficient competition among CSP agents and corroborates the core benefits in terms of reduced charging costs for EV users, enhancement of RES absorption and cost efficiency of the power distribution network. Results also validate the excellent generalization capability of the proposed method in coping with CPTN uncertainties. Finally, the rationale of the proposed attention mechanism is validated and the superior computational performance is highlighted against the state-of-the-art methods.
Keywords(英文与中文):
Coupled power-transportation network 电力交通耦合网络
Electric vehicles 电动汽车
Multi-agent reinforcement learning 多智能体强化学习
Nash equilibrium 纳什均衡
Pricing game analysis 定价博弈
Graphics
图1. 所研究充电定价问题的形成因素、设定及其对能源转型和交通电气化的价值
图2. CSP定价博弈问题示意
图3. 所提Att-MAPPO算法的训练和执行过程
图4. 同轮次下所提算法与其它算法所得策略的纳什均衡度对比
图5. 同轮次下所提算法与其它算法的收益对比
图6. 所提策略在提升新能源消纳率和降低电力运行成本方面的效果
图7. 基于所述方法,分析不同用户弹性系数下竞争性市场和非竞争性市场的效益变化
图8. 基于所述方法,分析不同电动汽车渗透率及初始电量下车流空间分布变化
关于Applied Energy
本期小编:赵秉旭;审核人:张庭生
《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子11.2,CiteScore 21.1,谷歌学术全球学术期刊第49,工程期刊第19位,可持续能源子领域第2位,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》现已被ESCI收录。2024年将获得第一个影响因子。全部论文可以免费下载。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!
公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至wechat@applied-energy.org
点击“阅读原文”
提交文章吧
喜欢我们的内容?
点个“赞”或者“再看”支持下吧!