信息技术相关产业融合交叉领域多关系网络识别

文摘   2025-01-13 20:20   山东  

李保祥1 孔令凯2 杨晓萌3

1.厦门理工学院经济与管理学院;

2.昆明理工大学管理与经济学院;

3.江苏科技大学经济管理学院 

摘要为了识别与分析跨产业融合交叉领域多关系网络,利用LDA主题模型,运用主题强度、文本相似度、共现率、共现网络分析法及复杂网络分析法,识别出产业融合交叉领域多关系网络,并揭示其拓扑结构、最大社团以及关键节点的演化特征。研究发现高校一直占据网络关键节点位置,掌握网络资源的控制优势;企业逐渐占据网络中更多重要节点位置;网络核心—边缘结构与企业之间抱团现象愈加明显。该研究为揭示复杂网络中异质性关系主体间关联与生长规律提供了新的路径,为企业获取技术资源与市场竞争优势提供了经验证据,也为政府部门优化产业融合发展政策提供了有益参考。

关键词LDA模型;融合交叉领域;多关系网络;网络识别与分析

基金资助:教育部人文社科基金青年项目(23XJC630006);教育部人文社科基金青年项目(23YJC630209); 厦门理工学院高层次人才引进项目(YSK24006R)

Multi-relationship Network Identification in Cross-fusion Domains of Information Technology-related Industries

LI Baoxiang1, KONG Lingkai2, YANG Xiaomeng3

(School of Economics and Management, Xiamen University of Technology, Xiamen 361024; Faculty of Management and Economics, Kunming University of Science and Technology, Kunming 650504; School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang 215699)

Abstract: In order to identify and analyze the multi-relational network of cross-industry fusion cross-field, we used the LDA topic model, and applied the topic intensity, text similarity, co-presence rate, co-presence network analysis and the complex network analysis method to identify the multi-relational network. The findings reveal the evolutionary characteristics of multi-relational network topology, maximum communities, and key nodes. The findings indicate that universities have consistently occupied key node positions within these networks and have maintained a dominant control over network resources. Enterprises have gradually taken on more significant node positions in these networks. Furthermore, the core-periphery structures and the phenomenon of enterprises clustering together have become increasingly evident. This research provides a new approach for uncovering the associations and growth patterns among heterogeneous relationship subjects in complex networks. It offers empirical evidence for enterprises seeking to acquire technological resources and gain a competitive edge in the market, while also serving as a valuable reference for government departments aiming to optimize policies for industrial convergence and development.

Keywords: LDA model; cross-fusion domain; multi-relationship network; network identification and analysis
作者介绍:

李保祥(1992-),男,河北沧州人,博士,讲师,研究方向为复杂社会网络、数字化、创新与知识管理。

孔令凯(1993-),男,云南曲靖人,博士,讲师,研究方向为技术创新与关键共性技术。

杨晓萌(1993-),女,黑龙江绥化人,博士,讲师,研究方向为关键共性技术与技术合作研发。

引用本文:  

李保祥,孔令凯,杨晓萌.信息技术相关产业融合交叉领域多关系网络识别[DB/OL].(2025-01-07].http://kns.cnki.net/kcms/detail/37.1402.N.20250107.0841.002.html.

↓↓↓全文请点下方阅读原文

复杂系统与复杂性科学
《复杂系统与复杂性科学》官方公众号,定期发布期刊动态、目录及重要文章,分享复杂性科学领域的新动态,为广大科研工作者搭建学术交流的平台。
 最新文章