长久以来,新材料的研发主要依赖试错法,这种传统的研究范式不仅耗时费力,而且成本高昂。20世纪中叶起,随着蒙特卡罗方法、分子动力学和密度泛函理论(DFT)等计算物理方法的发展及其在不同材料体系中的应用,计算材料学逐渐成型,并广泛应用于信息技术、能源、化工、生物医药、航空航天等领域,成为探索物质世界、研发新材料的重要工具。近年来,随着计算材料学和人工智能(AI)快速发展,基于机器学习的材料设计逐渐成为可能[1]。机器学习算法能够处理复杂的非线性关系,发现高维数据中的模式和规律,自动从数据中提取隐藏的关键特征,并且具备较强的泛化能力和迭代优化能力。这些优势与材料研究天然匹配,有望解决材料科学中设计空间巨大、构效关系复杂等关键共性难题。
深度学习在超材料领域的应用正逐渐引起关注,它为超材料设计、优化和性能预测提供了新的工具和方法。
超材料的复杂性:
设计挑战:超材料的功能特性源于其微观结构的精确设计,这些结构通常具有复杂的几何形状和多层次的特性。传统的设计和优化方法可能难以处理这些复杂性。
性能预测:超材料的性能涉及对其响应的准确预测,包括对电磁波、声波和热波的传播、散射和吸收等行为。传统的理论和数值模拟方法计算成本高且复杂。
深度学习的优势:
数据驱动建模:深度学习可以从大量的实验数据或模拟数据中学习超材料的行为模式,无需过多依赖传统的物理建模。通过训练神经网络,能够预测超材料在不同条件下的性能。自动特征学习:深度学习模型能够自动从数据中提取重要特征,减少人工设计和优化过程中的复杂性,提高设计效率。
深度学习在超材料中的应用:
设计优化:使用深度学习模型优化超材料的几何结构和参数,以实现特定的功能,如提高光学、声学或电磁性能。例如,生成对抗网络(GANs)和优化算法可以用来生成和改进超材料设计。
性能预测:通过深度学习模型预测超材料在不同频率、波长和环境条件下的响应,帮助设计者评估其性能并进行调整。
逆设计问题:在超材料设计中,逆问题通常涉及根据所需的功能特性反推材料结构。深度学习可以解决这些逆问题,生成满足特定性能要求的超材料结构。
实验数据分析:利用深度学习对实验数据进行分析,识别超材料的行为特征,改进材料性能测试和分析的方法等。
总的来说,深度学习在超材料领域提供了新的方法和工具,可以显著提升在声学超材料(噪声控制、声学隐身)、光学超材料(隐身技术、超透镜)、电磁超材料(无线通信、智能反射材料)、结构超材料(防震和减振、自修复材料)、能源领域(光伏材料、热管理)等领域的超材料设计、优化和性能预测的效率。
由于学习平台文献、视频教程资料较少,技术不公开,对于有相应科研任务和发高质量文章的科研人员极度困扰,在这种情况下,培训学习显得尤为迫切。因此,特诚邀您参加我们线上培训课程,目前已有4000余名参会会员!我们的目标是助力学员在Nature、Science、Cell等正刊及子刊上发表高质量文章,借助新技术在更有限的经费下取得更高质量的研究成果。让我们共同冲刺顶尖刊物,共创2024年的科研巅峰!
1、学习声子晶体等弹性波超材料的基本概念与计算方法。
2、学习深度学习基本概念、算法以及 Pytorch 的模型搭建。
3、深度学习在弹性波超材料领域的研究现状。
4、学习基于 COMSOL with MATLAB 的声子晶体数据集批量自主生成方法(分
享课程涉及的所有数据集及代码)
5、学习基于深度学习的声子晶体拓扑结构的正向预测设计、深度学习常用模型
(DFN+AE)的训练及实现方式。(分享课程涉及的所有代码)
主讲老师来自国内重点院校,固体力学研究方向,参与多项国家重点研发项目和国家自然科学基金面上项目,发表国内外高水平期刊论文、专利等 12项科研成果。在基于深度学习的弹性波超材料反向设计研究领域深耕多年,具有丰富的编程经验和扎实的理论基础。
1.1 弹性波超材料
1.1.1 弹性波超材料基本概念
1.1.2 声子晶体等弹性超材料的应用前景
1.1.3 计算方法(6 大方法)
1.1.4 带隙机理
1.1.5 模态分析 (能量耗散机理)
1.1.5 COMSOL 商用有限元软件的安装
1.1.6 案例 1:基于有限元法的二维周期结构超材料能带曲线计算(包含实操)
1.1.7 案例 2:基于有限元法的二维周期结构频域与时域响应计算(包含实操
2.1 深度学习
2.1.1 概念与原理
2.1.2 常见的深度学习模型(DFN、CNN、RNN、VAE 等)
2.1.3 深度学习在声子晶体等弹性波超材料领域的研究现状
2.1.4 Anaconda 环境与 Pytorch 深度学习框架的安装(包含实操)
2.1.5 Github 查询相关代码
2.1.6 基于 Python 的二维声子晶体样本数据集创建(包含实操)
3.1 用于声子晶体带隙批量计算的 MATLAB 代码
3.1.1 COMSOL 有限元模型以 MATLAB 代码表示
3.1.2 MATLAB 读取并修改 COMSOL 有限元模型
3.2 基于 COMSOL with MATLAB 的带隙数据批量自动生成方法
3.2.1 通过代码更改 COMSOL 有限元模型中的几何和材料参数变量(包含实操)
3.3 数据的整合方法与 Python 代码(包含实操)
3.4 基于 Python 的二维声子晶体带隙可视化处理系统(包含实操)
4.1 总设计流程思路
4.2 训练基本环境与硬件配置及超参数设置
4.3 自编码器 AE:提取数据特征(包含实操)
4.3.1 AE 的基本架构介绍
4.3.2 AE 训练
5.1 前馈神经网络 DFN:建立拓扑构型与带隙之间的联系(包含实操)
5.1.1 DFN 的基本架构介绍
5.1.2 DFN 训练
5.2 训练与验证
5.3 拓扑构型与带隙结果的真实值与测试值预测对比(包含实操)
5.1 基于目标带隙反向设计结构
5.2 组合扩大衰减域,建立 COMSOL 有限元模型
5.2 频域分析、谐响应分析和位移场分析
5.3 地震动时程分析
5.3.1 地震动时程分析教学讲解(包含实操)
5.3.2 隔震性能结果展示(以 Helena Montana-02 地震波和 Chi-Chi 地震波为例)
5.4 课程总结
机器学习方法对材料学研究有着重要的意义。传统的材料研究方法通常需要耗费大量的时间和人力资源,而且只能研究少量的材料。相比之下,机器学习方法可以快速地分析大量的数据,提取数据中的模式和规律,为材料设计和发现提供指导和支持。机器学习方法可以用于材料结构和性能的预测。通过对已知材料的结构和性能进行大规模的数据分析,可以训练出机器学习模型,用于预测未知材料的结构和性能。这种方法可以大大加速材料研究过程,节省研究成本。此外,机器学习方法还可以用于材料发现和优化。通过对已有材料数据的分析,可以发现一些新的材料候选者,并对其进行进一步的实验验证。机器学习还可以指导材料设计,通过预测不同元素或化合物之间的相互作用,帮助设计出具有特定性质的新材料。机器学习方法在材料学研究中具有广泛的应用前景,帮助材料科学家们加快新材料的发现和优化,推动材料科学的发展。并且已经取得重要突破。该领域知识面广,相关资料和学习平台相对匮乏,信息技术也不够开放,培训学习显得尤为迫切。因此,特诚邀您参加我们的线上培训课程,目前已有4000余名参会会员!我们的目标是助力学员在Nature、Science、Cell等正刊及子刊上发表高质量文章,借助新技术在更有限的经费下取得更高质量的研究成果。让我们共同冲刺顶尖刊物,共创2024年的科研巅峰!
机器学习(ML)在材料研究中的应用,让学员能够掌握学习理论知识及熟悉代码实操,文章的复现,学会anaconda、Python、pymatgen等软件、以及机器学习数据采集及清洗、分子结构表示及提取、模型训练和测试、性能评估及优化,KNN、线性回归方法,学会机器学习材料预测,材料分类,材料可视化,多种机器学习方法综合预测等操作技能,独自完成自己的课题研究项目
主讲老师来自国内高校孙老师授课,老师擅长利用量子化学方法和机器学习方法预测设计并研究新型能源材料、锂离子电池的电极材料,燃料电池催化剂以及燃料电池体系的整体设计,已在Energy & Materials,Journal of Physical Chemistry Letters, Journal Physical Chemistry C,等权威期刊上发表SCI检索论文近40余篇。老师在我们单位长期授课,参会学员累计四千余人,讲课内容和授课方式以及敬业精神受到参会学员的一致认可和高度评价!人工智能材料化学与深度学习材料更是我们单位的金牌讲师,好评如潮!
理论内容
1.机器学习概述
2.材料与化学中的常见机器学习方法
3.应用前沿(实操内容 )
Python基础
1.开发环境搭建
2.变量和数据类型
3.列表
4.if语句
5.字典
6.For和while循环 (实操内容 )
Python基础(续)
1.函数
2.类和对象
3.模块
Python科学数据处理
1.NumPy
2.Pandas
3.Matplotlib
理论内容
1.线性回归
1.1 线性回归的原理
1.2 线性回归的应用
2. 逻辑回归
2.1原理
2.2 使用方法
3. K近邻方法(KNN)
3.1 KNN分类原理
3.2 KNN分类应用
4. 神经网络方法的原理
4.1 神经网络原理
4.2神经网络分类
4.3神经网络回归(实操内容)
1.线性回归方法的实现与初步应用(包括L1和L2正则项的使用方法)
2.逻辑回归的实现与初步应用
3.KNN方法的实现与初步应用
4.神经网络实现(项目实操)
1.利用机器学习设计高体积模量高熵合金
2.训练机器学习模型预测多孔材料的催化性能
这两个实操项目同时穿插讲解如下内容
A1 机器学习材料与化学应用的典型步骤
A1.1 数据采集和清洗
A1.2 特征选择和模型选择
A1.3 模型训练和测试
A1.4 模型性能评估和优化
理论内容
1.决策树
1.1决策树的原理
1.2决策树分类
2.集成学习方法
2.1集成学习原理
2.2随机森林
2.3Bosting方法
3.朴素贝叶斯概率
3.1原理解析
3.2 模型应用
4. 支持向量机
4.1分类原理
4.2核函数(实操内容)
1.决策树的实现和应用
2.随机森林的实现和应用
3.朴素贝叶斯的实现和应用
4.支持向量机的实现和应用(项目实操)
1.使用实验数据训练机器学习模型预测金属有机框架材料中的气体吸附
2.通过机器学习方法筛选新型四元半导体化合物
这两个实操项目同时穿插讲解如下内容
A1 模型性能的评估方法
A1.1 交叉验证:评估估计器的性能
A1.2 分类性能评估
A1.3 回归性能评估
理论内容
1. 无监督学习
2.1 什么是无监督学习
2.2 无监督算法——聚类
2.3 无监督算法——降维
2. 材料与化学数据的特征工程
2.1分子结构表示
2.2 独热编码
3. 数据库
3.1材料数据库介绍
3.2 Pymatgen介绍(实操内容)
1. 分子结构的表示与特征提取
2. 聚类、降维等无监督学习方法应用于分子特征处理(项目实操)
1. 在机器学习技术的指导下加速钙钛矿材料的发现
2. 机器学习对CO2 封存的解释和预测
项目实操
1. 基于分子特征和逻辑回归预测分子性质
2. 基于分子特征的无监督学习综合应用(项目实操)
1. 通过机器学习预测 NiCoFe 氧化物催化剂的活性
2. 利用基于成分的能源材料描述符进行机器学习模型的综合预测
1.学习Material Project,AFLOW,OQMD三大材料数据库的数据获取方法。
2.学习卷积神经网络、循环神经网络和晶体图神经网络等深度学习方法在材料预测方面的应用。
3.学习主流材料数据库的数据获取方法;
4.深度学习方法在材料预测方面的应用。
第一天上午
理论内容
1.材料数据库:介绍Material Project, OQMD, AFLOW等数据库的特点和使用方法。
2.深度学习入门:基础概念,包括神经网络、激活函数、损失函数等。
3.图神经网络:图神经网络的基本原理和在材料科学中的应用。
4.材料特征工程:如何从材料数据中提取有用的特征。
实操内容(:
Pytorch深度学习框架演练:安装和配置Pytorch,基础的神经网络模型构建和训练。
第一天下午
实操内容
1.Pymatgen介绍及结构文件生成
2.Pymatgen构建机器学习特征:
3.ASE(Atomic Simulation Environment)的使用
4.爬虫获取二维数据集
5.材料结构分析与可视化
第二天上午
实操内容
1. AFLOW数据库的数据获取
1.1 AFLOW数据库功能练习
1.2. 爬虫获取AFLOW数据库的数据
2. OQMD数据库
2.1 OQMD数据库功能练习
2.2 OQMD数据库的数据获取
第二天下午
实操内容
1. material project数据库
1.1 新版material project获取材料XRD、DOS图、能带图、吸收谱等数据
1.2 Pymatgen按照属性要求获取material project材料数据
2. 材料特征工程工具matminer演练
2.1 matminer获取材料数据集
2.2 matminer生成材料描述符演练
第三天上午
理论内容
卷积神经网络(CNN)基础
卷积层、池化层、卷积核、特征图
经典的CNN架构,如LeNet、AlexNet、VGGNet、GoogLeNet和ResNet
循环神经网络(RNN)基础
时间步和隐藏状态、梯度消失和梯度爆炸、RNN的变体
实操和演示内容
基于CNN方法训练扫描电镜图像对锂离子阴极成分及状态的预测
基于RNN和CNN辅助识别有序结构
第三天下午
实操内容
基于数据驱动的功能材料开发案例二(晶体图神经网络实现材料属性预测):
1. 用PYG搭建图神经网络(GCN、GAT)
2. 晶体图神经网络CGCNN模型代码原理
3. 利用晶体图神经网络实现材料属性预测
第四天上午
长短期记忆网络、门控网络的架构与原理
输入门、遗忘门、输出门
自注意力机制、多头注意力机制、位置编码、残差连接、编码器和解码器
Transformer
实操内容(:
基于LSTM、GRU的分子生成模型
Transformer用于聚合物性质预测
第四天下午
理论内容(
自回归模型、自编码器、序列生成模型
变分自编码器(VAE)基础
生成对抗网络(GAN)基础
实操内容(约2小时):
GAN模型的构建
训练GAN进行材料属性预测
GAN在材料设计中的案例研究
自编码器和变分自编码器的训练
变分自编码器在材料设计中的应用
部分案例图片
机器学习材料
2024.10.19-2024.10.20(上午9:00-11:30 下午13:30-17:00)
2024.10.23-2024.10.24 (晚上19:00-22:00)
2024.10.26-2024.10.27(上午9:00-11:30 下午13:30-17:00)
深度学习材料
2024.10.29-2024.11.01(晚上19:00-22:00)
2024.11.02-2024.11.03 (上午9:00-11:30 下午13:30-17:00)
深度学习超材料逆向设计
2024.10.19-2024.10.20 (上午09.00-11.30 下午13.30-17.00)
2024.10.26-2024.10.27 (上午09.00-11.30 下午13.30-17.00)
2024.11.02-2024.11.03 (上午09.00-11.30 下午13.30-17.00)
课程费用
深度学习超材料逆向设计、机器学习材料、深度学习材料
公费价:每人每个专题课程¥4980元 (含报名费、培训费、资料费等)
自费价:每人每个专题课程¥4680元 (含报名费、培训费、资料费等)
套餐价:同时报名两个课程¥9680元 报二赠一(含报名费、培训费、资料费等)
福利:
报名两门赠送一门专题课程并且赠送下方三门课程回放视频(回放视频可点击跳转详情链接):
优惠:提前报名缴费学员可得300元优惠(仅限前15名)
报名费用可开具正规报销发票及提供相关缴费证明、邀请函,可提前开具报销发票、文件用于报销
1、课程特色--全面的课程技术应用、原理流程、实例联系全贯穿
2、学习模式--理论知识与上机操作相结合,让零基础学员快速熟练掌握
3、课程服务答疑--主讲老师将为您实际工作中遇到的问题提供专业解答
授课方式:通过腾讯会议线上直播,理论+实操的授课模式,老师手把手带着操作,从零基础开始讲解,电子PPT和教程开课前一周提前发送给学员,所有培训使用软件都会发送给学员,有什么疑问采取开麦共享屏幕和微信群解疑,学员和老师交流、学员与学员交流,培训完毕后老师长期解疑,培训群不解散,往期培训学员对于培训质量和授课方式一致评价极高!
学员对于培训给予高度评价
引用本次参会学员的一句话: