❝
主讲人:诸承昊 UCLA博士后,研究方向为癌症蛋白基因组
❞
主持人:张刘灯 Baylor College of Medicine博士生,研究方向为muli-omics
活动大纲
1. Cancer molecular profiling: from genomics to proteogenomics
Overview of cancer genomics: effectiveness and limitations. Transition to proteogenomics: Integrating proteomics with genomics for deeper insights. Technologies and platforms enabling proteogenomic profiling (e.g., mass spectrometry [MS], next-generation sequencing). Examples from CPTAC studies showcasing proteogenomics in clinical oncology studies.
2. Technology challenges in identifying non-canonical peptides from proteogenomic data
Definition and importance of non-canonical peptides: unannotated sequences derived from variants. Bioinformatics challenges in detecting these peptides in MS data. Computational strategies for identifying proteomic consequences for tumor-specific variants.
3. moPepGen: algorithm for predicting comprehensive non-canonical peptides
Detailed algorithmic approach of moPepGen for predicting non-canonical peptides from genomic data. Performance metrics: runtime efficiency and benchmark comparisons with existing tools.
4. moPepGen for detecting non-canonical peptides in proteomics data
Application of moPepGen in MS-based proteomics for identifying non-canonical peptides. Case studies:
Non-canonical peptide and neoantigen detection in cancer cell lines.
Identification in kidney cancer DIA proteomics.
Application to prostate tumor proteomics.
主要内容
Genomics is essential in cancer research, driving patient stratification, biomarker discovery, and treatment target identification. However, limitations such as the variability in treatment responses among patients with identical genomic variants remain. Combining genomics with proteomics opens new avenues to overcome these challenges, providing insights beyond genomic data alone.
By integrating protein abundance and post-translational modifications (PTMs) with genomic data, proteogenomics refines patient classification for better clinical relevance and facilitates the discovery of novel therapeutic targets. Proteogenomics enables identification of neoantigens, essential for immunotherapies, as non-canonical peptides harboring tumor-specific variants. However, identifying these peptides, part of the hidden proteome, remains a key challenge. In this talk, I will introduce moPepGen, a novel bioinformatics algorithmthat generates comprehensive non-canonical peptide databases from genomic data for subsequent identification in proteomics data. Coupled with our custom database search pipeline, moPepGen provides a robust solution for unveiling the hidden proteome, advancing the potential for more effective immunotherapies and precision oncology.
Unveiling the Hidden Proteome: Comprehensive Non-Canonical Peptide Identification from Proteogenomics with moPepGen
主讲人: 诸承昊,UCLA博士后,研究方向癌症蛋白基因组 时间: 2024年10月19日(周六)11:00-13:00 地点: 线上腾讯会议
学术部纳新&知识分享官投稿征集!
自 2023 年 1 月 1 日起 BioLinkX 学术部面向全社会所有生物信息学研究者全年开放招募。详情点击查看原文:BioLinkX | 学术部纳新持续进行中!
BioLinkX「知识分享官」是「生信半月谈」 的延伸和补充。详情点击查看原文:BioLinkX「知识分享官」投稿征集中!
本期活动对BioLinkX协会成员免费开放,非协会成员付费可获得旁听权限,获得线上入会口令,并获得相应活动资料,该收入将用于激励主讲人以及协会发展。本次活动定价 50 元,添加小助手微信(请备注BioLinkX)转账即可。
欢迎志同道合的朋友们加入 BioLinkX 生物信息学交流群 ~ 由于目前群已满 200 人,同时避免部分商家频繁加群打广告影响群友正常交流,请加小助手微信并支付15元(购买门票可免费入群),拉您入群(请备注BioLinkX),群运营所得将用于群内活动支出。
•公众号:BioLinkX
•视频号:BioLinkX
•b站:BioLinkX
编辑 | 诸承昊
排版 | 张皓凯