01
真核生物小RNA发现的历史重大事件
✦
真核生物小RNA发现历史大事件
02
拟南芥miRNA研究历史
✦
拟南芥miRNA研究发现大事件
03
作物miRNA的研究历程
✦
水稻miRNA重要研究历程
04
植物miRNA研究展望
✦
注:由于篇幅限制,miRNA研究事件众多,写作难免有疏漏之处,敬请谅解。
上下滑动阅览
参考文献
1.Napoli, C. & Jorgensen, R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279–289 (1990).
2.Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
3.Baulcombe, D. C. Gene silencing: RNA makes RNA makes no protein. Curr. Biol 9, R599–R601 (1999).
4.Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).
5.Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).
6.Bohmert, K. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J 17, 170–180 (1998).
7.Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).
8.Lau, N. C. et al. Characterization of the piRNA Complex from Rat Testes. Science 313, 363–367 (2006).
9.Llave, C., Kasschau, K., Rector, M. & Carrington, J. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605–1619 (2002).
10.Errampalli, D. et al. Embryonic Lethals and T-DNA Insertional Mutagenesis in Arabidopsis. Plant Cell 3, 149–157 (1991).
11.Castle, L. A. et al. Genetic and molecular characterization of embryonic mutants identified following seed transformation in Arabidopsis. Mol Genet Genomics 241, 504–514 (1993).
12.Franzmann, L. H., Yoon, E. S. & Meinke, D. W. Saturating the genetic map of Arabidopsis thaliana with embryonic mutations. Plant J 7, 341–350 (1995).
13.Schwartz, B. W., Yeung, E. C. & Meinke, D. W. Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis. Development 120, 3235–3245 (1994).
14.Jacobsen, S. E., Running, M. P. & Meyerowitz, E. M. Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems. Development 126, 5231–5243 (1999).
15.Schauer, E., Jacobsen, E., Meinke, W. & Ray, A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7, 487–491 (2002).
16.Chen, X., Liu, J., Cheng, Y. & Jia, D. HEN1 functions plelotropically in Arabidopsis development and acts in C function in the flower. Development 129, 1085–1094 (2002).
17.Park, W., Li, J., Song, R., Messing, J. & Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol 12, 1484–1495 (2002).
18.Chen, X. microRNA biogenesis and function in plants. FEBS Letters 579, 5923–5931 (2005).
19.Li, J., Yang, Z., Yu, B., Liu, J. & Chen, X. Methylation Protects miRNAs and siRNAs from a 3′-End Uridylation Activity in Arabidopsis. Curr. Biol 15, 1501 (2005).
20.Baumberger, N. & Baulcombe, D. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering RNAs. PNAS 102, 11928–11933 (2005).
21.Park, M. Y., Wu, G., Gonzalez-Sulser, A., Vaucheret, H. & Poethig, R. S. Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102, 3691–3696 (2005).
22.Llave, C., Xie, Z., Kasschau, K. & Carrington, J. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).
23.Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025 (2004).
24.Brodersen, P. et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science 320, 1185–1190 (2008).
25.Li, S. et al. MicroRNAs Inhibit the Translation of Target mRNAs on the Endoplasmic Reticulum in Arabidopsis. Cell 153, 562–574 (2013).
26.Rong, F. et al. Switching action modes of miR408-5p mediates auxin signaling in rice. Nature Communications 15, 2525 (2024).
27.Manavella, P. A. et al. Fast-Forward Genetics Identifies Plant CPL Phosphatases as Regulators of miRNA Processing Factor HYL1. Cell 151, 859–870 (2012).
28.Lauressergues, D. et al. Primary transcripts of microRNAs encode regulatory peptidesPrimary transcripts of microRNAs encode regulatory peptides. Nature 520, 90-U205 (2015).
29.Wang, Z. et al. SWI2/SNF2 ATPase CHR2 remodels pri-miRNAs via Serrate to impede miRNA production. Nature 557, 516+ (2018).
30.Ramachandran, V. & Chen, X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321, 1490–1492 (2008).
31.Xie, D. et al. Phase separation of SERRATE drives dicing body assembly and promotes miRNA processing in Arabidopsis. Nat. Cell Biol 23, (2021).
32.Rhoades, M. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).
33.Palatnik, J. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).
34.Kidner, C. & Martienssen, R. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428, 81–84 (2004).
35.Allen, E., Xie, Z., Gustafson, A. & Carrington, J. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005).
36.Wang, J. et al. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17, 2204–2216 (2005).
37.Nikovics, K. et al. The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18, 2929–2945 (2006).
38.Ru, P., Xu, L., Ma, H. & Huang, H. Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res 16, 457–465 (2006).
39.Vaucheret, H., Mallory, A. & Bartel, D. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol. Cell 22, 129–136 (2006).
40.Navarro, L. et al. A Plant miRNA Contributes to Antibacterial Resistance by Repressing Auxin Signaling. Science 312, 436–439 (2006).
41.Mi, S. et al. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133, 116–127 (2008).
42.Montgomery, T. A. et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133, 128–141 (2008).
43.Addo-Quaye, C., Eshoo, T. W., Bartel, D. P. & Axtell, M. J. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol 18, 758–762 (2008).
44.German, M. A. et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat. Biotechnol 26, 941–946 (2008).
45.Wu, G. & Poethig, R. S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539–3547 (2006).
46.Wang, J.-W., Czech, B. & Weigel, D. miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana. Cell 138, 738–749 (2009).
47.Wu, G. et al. The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell 138, 750–759 (2009).
48.Zhou, C.-M. et al. Molecular Basis of Age-Dependent Vernalization in Cardamine flexuosa. Science 340, 1097–1100 (2013).
49.Bergonzi, S. et al. Mechanisms of Age-Dependent Response to Winter Temperature in Perennial Flowering of Arabis alpina. Science 340, 1094–1097 (2013).
50.Kim, J. H. et al. Trifurcate Feed-Forward Regulation of Age-Dependent Cell Death Involving miR164 in Arabidopsis. SCIENCE 323, 1053–1057 (2009).
51.Carlsbecker, A. et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465, 316–321 (2010).
52.Zhu, H. et al. Arabidopsis Argonaute10 Specifically Sequesters miR166/165 to Regulate Shoot Apical Meristem Development. Cell 145, 242–256 (2011).
53.Zhang, X. et al. Arabidopsis Argonaute 2 Regulates Innate Immunity via miRNA393*-Mediated Silencing of a Golgi-Localized SNARE Gene, MEMB12. Mol. Cell 42, 356–366 (2011).
54.Cai, Q. et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360, 1126–1129 (2018).
55.Baldrich, P. et al. Plant Extracellular Vesicles Contain Diverse Small RNA Species and Are Enriched in 10-to 17-Nucleotide “Tiny” RNAs. Plant Cell 31, 315–324 (2019).
56.Chen, X. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research 18, 997–1006 (2008).
57.Schwab, R., Ossowski, S., Riester, M., Warthmann, N. & Weigel, D. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18, 1121–1133 (2006).
58.Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat. Genet 39, 1033–1037 (2007).
59.Yan, J. et al. Effective Small RNA Destruction by the Expression of a Short Tandem Target Mimic in Arabidopsis. Plant Cell 24, 415–427 (2012).
60.Wang, J.-F., Zhou, H., Chen, Y.-Q., Luo, Q.-J. & Qu, L.-H. Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Res 32, 1688–1695 (2004).
61.Sunkar, R., Girke, T., Jain, P. K. & Zhu, J.-K. Cloning and characterization of microRNAs from rice. Plant Cell 17, 1397–1411 (2005).
62.Liu, B. et al. Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol 139, 296–305 (2005).
63.Yang, J. H., Han, S. J., Yoon, E. K. & Lee, W. S. Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res 34, 1892–1899 (2006).
64.Yao, Y. et al. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol 8, 1–13 (2007).
65.Zhu, Q.-H. et al. A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18, 1456–1465 (2008).
66.Wu, L. et al. Rice microRNA effector complexes and targets. Plant Cell 21, 3421–3435 (2009).
67.Wu, L. et al. DNA methylation mediated by a microRNA pathway. Mol. Cell 38, 465–475 (2010).
68.Jeong, D.-H. et al. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell 23, 4185–4207 (2011).
69.Chuck, G., Cigan, A. M., Saeteurn, K. & Hake, S. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature genetics 39, 544–549 (2007).
70.Chuck, G., Meeley, R., Irish, E., Sakai, H. & Hake, S. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat. Genet 39, 1517–1521 (2007).
71.Johnson, C. et al. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19, 1429–1440 (2009).
72.Jiao, Y. et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet 42, 541–544 (2010).
73.Miura, K. et al. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat. Genet 42, 545–549 (2010).
74.Zhang, L. et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22, 107–126 (2012).
75.Zhang, Y.-C. et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat. Biotechnol 31, 848 (2013).
76.Che, R. et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nat. Plants 2, 15195 (2015).
77.Gao, F. et al. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat. Plants 2, 1–9 (2015).
78.Wu, J. et al. ROS accumulation and antiviral defence control by microRNA528 in rice. Nat. Plants 3, 1–7 (2017).
79.Yang, R. et al. Fine-tuning of MiR528 accumulation modulates flowering time in rice. Mol. Plant 12, 1103–1113 (2019).
80.Yao, S. et al. Transcriptional regulation of miR528 by OsSPL9 orchestrates antiviral response in rice. Mol. Plant 12, 1114–1122 (2019).
81.Zhang, Y.-C. et al. OsmiR528 regulates rice-pollen intine formation by targeting an uclacyanin to influence flavonoid metabolism. PNAS 117, 727–732 (2020).
82.Miao, C. et al. The grain yield modulator miR156 regulates seed dormancy through the gibberellin pathway in rice. Nat. Commun 10, 3822 (2019).
83.Wang, H. et al. Suppression of rice miR168 improves yield, flowering time and immunity. Nat. Plants 7, 129–136 (2021).
84.Qiao, J. et al. A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice. Mol. Plant 14, 1683–1698 (2021).
85.Hong, Z. et al. Bioengineering for robust tolerance against cold and drought stresses via co-overexpressing three Cu-miRNAs in major food crops. Cell Res 43, (2024).
86.Agrawal, N., Sachdev, B., Rodrigues, J., Sree, K. S. & Bhatnagar, R. K. Development associated profiling of chitinase and microRNA of Helicoverpa armigera identified chitinase repressive microRNA. Sci Rep 3, 2292 (2013).
87.He, K. et al. Transgenic microRNA-14 rice shows high resistance to rice stem borer. Plant Biotechnol. J 17, 461–471 (2019).
88.Zheng, X. et al. Transgenic rice overexpressing insect endogenous microRNA csu-novel-260 is resistant to striped stem borer under field conditions. Plant Biotechnol J 19, 421–423 (2021).
89.Chin, A. R. et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 26, 217–228 (2016).
90.Zhou, Z. et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res 25, 39–49 (2015).
作者简介:
长按或扫描二维码
订阅 Molecular Plant 和 Plant Communications
的最新文章邮件推送
Mol Plant
微信号|Mol Plant2019
www.cell.com/molecular-plant/home
点击“阅读原文”查看论文内容。