关注我们,每天都能收到这种好文章!
微信号:kqjy360
投稿邮箱:361687558@qq.com
结论:自体牙片联合GBR是一种有效的牙槽嵴水平骨增量方法。这项技术可成为自体骨移植的替代方法。
关键词:拔牙;牙槽骨增高术;骨再生;牙种植;观察性研究。
近年来,已有自体牙齿作为骨替代物的报道6-9。牙齿含有无机材料和有机基质,使其具有骨诱导和骨引导特性10,11。一些组织学研究证明,牙根被吸收,并被血管组织和编织骨小梁取代12,13。这一现象表明牙根参与了置换性吸收和骨重建过程。由于其组织学特性,牙齿可以不同形式进行骨增量。颗粒状牙粉已经被用作骨再生的骨替代品14,15。一些研究应用了整个牙根,随后成功地植入种植体9,16。
虽然使用牙齿材料后的临床结果已经被证明,但牙粉提供的空间支持对于严重骨缺损是不够的。此外,牙根的形状可能与骨缺损不匹配,这可能会影响最终的完全骨化,从而也影响后期种植体骨结合。这可促使进一步修整牙根,并结合GBR,以实现连续一致的轮廓并减少软组织张力,关于这一主题的相关研究还很少。本研究的目的是评价自体牙片移植联合GBR用于牙槽骨水平骨增量的效果。
A.术前 B.拔除的智齿 C.修整后的牙片 D. 翻瓣后的骨缺损区 E.去皮质化 F. 固定牙片 G.植骨盖膜 H. 无张力缝合
牙片移植6个月后,进行CBCT扫描,并进行种植体植入。翻全厚瓣,取出钛钉,根据修复计划将种植体放置在指定位置(图2和图3)。用牙周探针测量每个种植体的颊剩余骨量。
所有患者在手术前30分钟和术后3天接受抗生素治疗(阿莫西林500 mg,每日3次;奥硝唑500 mg,每日2次)。局部用0.12%洗必泰漱口,每日3次,连续7日。种植体植入后6个月行二期手术。使用Osstell ISQ设备(Integration Diagnostics AB,瑞典哥德堡),同时测量种植体稳定性(ISQ)。最终修复在两周后完成(图4)。如果牙片移植术后6个月种植体植入没有螺纹,则认为牙片移植是成功的。
CBCT测定的水平骨量结果和相应变化如表1和表2所示。不同时间点的骨量分析和比较结果如图7所示。移植后6个月的骨量明显大于移植前(P<0.0001,如图7A-C所示,标记为****)。
线性回归分析结果如图8所示。牙片移植术后6个月的骨量与移植前的骨量无明显相关性(图8A、C、E;均P>0.05)。然而,牙片移植术后6个月的骨增量与牙片移植术后即刻的骨增量显著相关(图8B、D、F;均P<0.05)。
术区愈合良好,无任何软组织裂开或感染迹象。术后疼痛反应评分汇总见表3。只有26.31%的患者术后出现重度疼痛。二期手术后ISQ为78.31±6.64。种植二期手术后植体的ISQ为78.31±6.64。
本研究旨在评价自体牙片移植联合GBR用于水平骨增量的效果。牙本质和部分牙骨质被保留,因为这些成分与骨23更一致。皮质骨穿孔促进了牙片移植物、牙槽骨和骨髓之间的连接。牙片不那么快速吸收维持了成骨空间,起到了类似于钛网的功能,比可吸收膜24,25作用要好。因此,牙片可以促进成骨,提供良好的空间支持,简化临床操作,并降低钛网相关的成本。
与牙片移植前相比,术后6个月各点(W1、W2、W3)的骨量显著增加。然而,牙片移植后6个月W1处的骨量明显低于移植后即刻的骨量(P=0.012)。此外,W1处的这种吸收(0.48±0.52 mm)略高于Schwarz等18的报告。我们认为明显的骨吸收与牙槽嵴顶口腔粘膜压力有关。此外,在Schwarz等人的报告中,整个牙根的吸收不太明显。
虽然本研究观察到了骨吸收,但所获得的骨量被认为是足够的,可以植入种植体。在这项研究中,每个种植体颊侧剩余骨量>1 mm,这意味着牙片移植成功。种植后6个月的ISQ(78.31±6.64)表明种植体的稳定性符合修复要求27。然而,种植体的长期稳定性和修复后的骨吸收状况有待进一步评估。
除了有效的骨增量效果,牙片移植的生物安全性也被认为是足够的。在种植手术中,牙片移植物被观察到与骨均匀结合。本研究未发现软组织裂开或感染病例,说明牙片具有良好的生物相容性。此外,修剪后的移植物很容易制备,不需要额外的复杂取骨手术。此外,只有26.3%的患者在手术后经历了严重疼痛。所有这些都证明了该技术的安全性和有效性。采用线性回归分析评估手术前后骨量之间的相关性。这种相关性可用于指导临床移植物质量的测量。牙片移植后6个月的骨量与移植后即刻的骨量有显著的相关性(图8)。然而,到目前为止,这还没有得到准确的量化。通过更大样本量的研究,可能会获得更准确的相关性。
在本研究中,通过前瞻性研究评估了牙片移植的临床潜力,观察到该技术可以获得牙种植所需的骨量,且创伤最小,严重疼痛的发生率低。这项技术基本上是安全的,认为是一种替代自体骨移植进行牙槽骨水平骨增量的方法。需要通过扩大样本量和以自体骨移植作为对照,进一步研究来验证本研究的结果。
图8 术后半年骨增量(D2)与术后即刻骨增量(D1)和术前骨量的线性分析(n=36)
2.Nkenke E, Weisbach V, Winckler E, Kessler P, Schultze-Mosgau S, Wiltfang J, Neukam FW. Morbidity of harvesting of bone grafts from the iliac crest for preprosthetic augmentation procedures: a prospective study. Int J Oral Maxillofac Surg 2004: 33: 157-63. doi: 10.1054/ijom.2003.0465
3.Waasdorp J, Reynolds MA. Allogeneic bone onlay grafts for alveolar ridge augmentation: a systematic review. Int J Oral Maxillofac Implants 2010: 25: 525-31.
4.Nkenke E, Neukam FW. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. Eur J Oral Implantol 2014: 7 (Suppl 2): S203-17.
5.Atef M, Tarek A, Shaheen M, Alarawi RM, Askar N. Horizontal ridge augmentation using native collagen membrane vs titanium mesh in atrophic maxillary ridges: Randomized clinical trial. Clin Implant Dent Relat Res 2020: 22: 156-166. doi: 10.1111/cid.12892
6.Becker K, Jandik K, Stauber M, Mihatovic I, Drescher D, Schwarz F. Microstructural volumetric analysis of lateral ridge augmentation using differently conditioned tooth roots. Clin Oral Investig 2019: 23: 3063-3071. doi: 10.1007/s00784-018-2723-4
7.Andersson L, Ramzi A, Joseph B. Studies on dentin grafts to bone defects in rabbit tibia and mandible; development of an experimental model. Dent Traumatol 2009: 25: 78-83. doi: 10.1111/j.1600-9657.2008.00703.x
8.Schwarz F, Golubovic V, Becker K, Mihatovic I. Extracted tooth roots used for lateral alveolar ridge augmentation: a proof-of-concept study. J Clin Periodontol 2016: 43: 345-53. doi: 10.1111/jcpe.12481
9.Pohl V, Pohl S, Sulzbacher I, Fuerhauser R, Mailath-Pokorny G, Haas R. Alveolar Ridge Augmentation Using Dystopic Autogenous Tooth: 2-Year Results of an Open Prospective Study. Int J Oral Maxillofac Implants 2017: 32: 870–879. doi: 10.11607/jomi.5396
10.Wu D, Zhou L, Lin J, Chen J, Huang W, Chen Y. Immediate implant placement in anterior teeth with grafting material of autogenous tooth bone vs xenogenic bone BMC Oral Health 2019: 19: 266. doi: 10.1186/s12903-019-0970-7
11.Jeong KI, Kim SG, Kim YK, Oh JS, Jeong MA, Park JJ. Clinical study of graft materials using autogenous teeth in maxillary sinus augmentation. Implant Dent 2011: 20: 471-5. doi: 10.1097/ID.0b013e3182386d74
12.Kim YK, Kim SG, Bae JH, Um IW, Oh JS, Jeong KI. Guided bone regeneration using autogenous tooth bone graft in implant therapy: case series. Implant Dent 2014: 23: 138-43. doi: 10.1097/ID.0000000000000046
13.Park M, Mah YJ, Kim DH, Kim ES, Park EJ. Demineralized deciduous tooth as a source of bone graft material: its biological and physicochemical characteristics. Oral Surg Oral Med Oral Pathol Oral Radiol 2015: 120: 307-14. doi: 10.1016/j.oooo.2015.05.021
14.Andersson L. Dentin xenografts to experimental bone defects in rabbit tibia are ankylosed and undergo osseous replacement. Dent Traumatol 2010: 26: 398-402. doi: 10.1111/j.1600-9657.2010.00912.x
15.Becker K, Drescher D, Hönscheid R, Golubovic V, Mihatovic I, Schwarz F. Biomechanical, micro-computed tomographic and immunohistochemical analysis of early osseous integration at titanium implants placed following lateral ridge augmentation using extracted tooth roots. Clin Oral Implants Res 2017: 28: 334-340. doi: 10.1111/clr.12803
16.Schwarz F, Schmucker A, Becker J. Initial case report of an extracted tooth root used for lateral alveolar ridge augmentation. J Clin Periodontol 2016: 43: 985-989. doi: 10.1111/jcpe.12602
17.Dong HG, Wen X., Bai LK. Jin X. Li Q, Li XG, Li JZ. The curative observation of iodophors disinfection effect on complete denture with metal base. Chinese Journal of Prosthodontics 2009: 10: 280-281.
18.F. Schwarz, D. Hazar, K. Becker, R. Sader, J. becker, Efficacy of autogenous tooth roots for lateral alveolar ridge augmentation and staged implant placement. A prospective controlled clinical study. J Clin Periodontol 2018: 45: 996-1004. doi: 10.1111/jcpe.12977
19.Benavides E, Rios HF, Ganz SD, An CH, Resnik R, Reardon GT, Feldman SJ, Mah JK, Hatcher D, Kim MJ, Sohn DS, Palti A, Perel ML, Judy KW, Misch CE, Wang HL. Use of cone beam computed tomography in implant dentistry: the International Congress of Oral Implantologists consensus report Implant Dent 2012: 21: 78-86. doi: 10.1097/ID.0b013e31824885b5
20.Karcioglu O, Topacoglu H, Dikme O, Dikme O. A systematic review of the pain scales in adults: Which to use? Am J Emerg Med 2018: 36: 707-714. doi: 10.1016/j.ajem.2018.01.008
21.Morris ML. The implantation of human dentin and cementum into the subcutaneous tissues of the rat. Periodontics 1967: 5: 113-22.
22.Morris ML. The implantation of human dentin and cementum with autogenous bone and red marrow into the subcutaneous tissues of the rat. J Periodontol 1969: 40: 259-63. doi: 10.1902/jop.1969.40.5.259
23.Kim YK, Kim SG, Yun PY, Yeo IS, Jin SC, Oh JS, Kim HJ, Yu SK, Lee SY, Kim JS, Um IW, Jeong MA, Kim GW. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials. Oral Surg Oral Med Oral Pathol Oral Radiol 2014: 117: e39-45. doi: 10.1016/j.oooo.2012.04.018
24.Jung RE, Fenner N, Hämmerle CH, Zitzmann NU. Long-term outcome of implants placed with guided bone regeneration (GBR) using resorbable and non-resorbable membranes after 12-14 years. Clin Oral Implants Res 2013: 24: 1065-73. doi: 10.1111/j.1600-0501.2012.02522.x
25. Pieri F, Corinaldesi G, Fini M, Aldini NN, Giardino R, Marchetti C. Alveolar ridge augmentation with titanium mesh and a combination of autogenous bone and anorganic bovine bone: a 2-year prospective study. J Periodontol 2008: 79: 2093-103. doi: 10.1902/jop.2008.080061
26.Grunder U, Gracis S, Capelli M. Influence of the 3-D bone-to-implant relationship on esthetics. Int J Periodontics Restorative Dent 2005: 25: 113-9.
27.Han J, Lulic M, Lang NP. Factors influencing resonance frequency analysis assessed by Osstell mentor during implant tissue integration: II. Implant surface modifications and implant diameter. Clin Oral Implants Res 2010: 21: 605-11. doi: 10.1111/j.1600-0501.2009.01909.x