目前,锌粉基阳极面临着一些严峻的挑战,包括严重的副反应和不均匀的Zn的沉积/剥离。这些问题导致锌负极可逆性差和锌利用率低,严重阻碍了其实际应用。
近日,西北工业大学官操教授等人在Science China Materials发表研究论文,在三维(3D)锌粉阳极表面原位制备了含羰基的多功能甲基丙烯酸锌(ZMA)层,可用于高性能锌-二氧化锰电池。
本文要点
1) 这种具有高电负性和高亲核性羰基的ZMA层有助于Zn2+脱溶过程,Zn2+的传输和离子通量的均匀化。此外,ZMA中的疏水碳链起到保护层的作用,减少Zn粉末与自由水的直接接触,显著提高其抗副反应能力。2) 通过ZMA和3D锌结构的协同作用,所制备的电极能够在20 mA cm−2/20 mAh cm−2的条件下稳定循环1153 h(DOD: 38.10%)。同时还证明了3D锌-二氧化锰电池的稳定性和高容量保持率(500次循环后为84.2%)。Figure 1. Design and characterization of ZMA@3D Zn. (a) Schematic illustration of the preparation process of 3D Zn scaffold. Mechanism comparison of the Zn deposition processes on (b) 3D Zn and (c) ZMA@3D Zn. (d) Optical image of ZMA@3D Zn. (e) The top-view SEM image and EDS mapping of ZMA@3DZn. (f) Cross-section SEM image and EDS mapping of ZMA@3D Zn. (g) FT-IR spectra of MA and ZMA@3D Zn. (h) XPS spectra of Zn 2p, O 1s and C 1s peaks of 3D Zn and ZMA@3D Zn. Scale bar: (e) 100 μm, (f) 10 μm.Figure 2. Depth mechanism study of ZMA@3D Zn. (a) Electrostatic potential mapping of ZMA. (b) Binding energies of various pairs. Electron density difference maps of (c) 3D Zn and (d) ZMA@3D Zn. (e) Adsorption energy of Zn atom on 3D Zn and ZMA substrates. (f) Nucleation overpotentials of 3D Zn and ZMA@3D Zn. (g) SEM images of 3D Zn and ZMA@3D Zn after the deposition at 10 mAh cm−2. Electric field distributions of (h) 3D Zn and (i) ZMA@3D Zn. Zn2+ concentration field simulation of (j) 3D Zn and (k) ZMA@3D Zn. CLSM 3D topographic images of (l) 3D Zn and (m) ZMA@3D Zn after cycling. Scale bar: (g) 20 μm.Figure 3. The cycle stability of 3D Zn and ZMA@3D Zn. Voltage profiles of symmetric cells with bare 3D Zn and ZMA@3D Zn electrodes at current density/capacity of (a) 10 mA cm−2/10 mAh cm−2, (b) 20 mA cm−2/20 mAh cm−2, and (c) 30 mA cm−2/30 mAh cm−2. (d) Comparison of cycle stability of symmetric cells between ZMA@3D Zn and recently reported Zn anodes. (e) Zn plating/stripping CEs of 3D Zn and ZMA@3D Zn at a current density of 10 mA cm−2 with a capacity of 1 mAh cm−2. (f) EIS results of symmetric cells (3D Zn||bare 3D Zn and ZMA@3D Zn||3D Zn) before and after cycle. SEM images show the surface of (g) 3D Zn and (h) ZMA@3D Zn anode after 100 cycles at 10 mA cm−2/10 mAh cm−2. Scale bar: (g, h) 20 μm.Figure 4. Full cell performance of 3D Zn and ZMA@3D Zn. (a) CV curves and (b) EIS plot of 3D Zn||3D MnO2 and ZMA@3D Zn||3D MnO2 cells. (c) Rate performance of full cells at various current densities. (d) Long cycle performance of 3D Zn||3D MnO2 and ZMA@3D Zn||3D MnO2 cells at 5 A g−1. Top view SEM images of (e) 3D Zn, and (f) ZMA@3D Zn after 500 cycles at 3 A g−1. Cross-section SEM images of (g) 3D Zn, and (h) ZMA@3D Zn after 500 cycles at 3 A g−1. Scale bar: (e, f) 10 μm, (g, h) 5 μm.Leiqing Cao, Fan Bu, Yuxuan Wang, Yong Gao, Wenbo Zhao, Jiayu Yang, Jipeng Chen, Xi Xu, Cao Guan. Multifunctional anchoring effect enables ultra-stable 3D-printed zinc powder-based anode. Sci. China Mater. (2024).https://doi.org/10.1007/s40843-024-3174-9
点击左下角“阅读原文”,阅读以上文章PDF原文