近年来,随着同步辐射掠入射X射线散射(GIWAXS)技术的广泛应用,研究人员对聚合物半导体的理解取得了显著进展。然而,在拉伸条件下利用GIWAXS研究聚合物超薄膜仍面临诸多挑战,主要瓶颈在于新型原位实验装置的开发和数据解析方法的建立。
近日,天津大学叶龙教授和中国科学院高能物理研究所陈雨副研究员等人在Science China Materials发表研究论文,设计并开发了一种可控温、可旋转的原位拉伸样品台装置,能够在北京同步辐射装置和上海光源实现对聚合物超薄膜的动态结构表征。
以代表性半导体聚合物N2200为例,首次展示了变温拉伸条件下的原位GIWAXS实验结果。研究发现,随着应变和温度的增加,聚合物薄膜的分子排列和堆积发生了显著变化。该研究深化了对聚合物超薄膜在拉伸条件下行为的理解,有望推动可拉伸电子器件及薄膜结构表征方法的设计与优化。Figure 1. (a) The design of the in-situ temperature controllable GIWAXS sample stage for stretchable thin films. (b) Molecular structure of the model semiconducting polymer N2200. (c) The schematic of the uniaxial temperature-controllable stretching sample stage for in-situ characterizing ultrathin polymeric films. (d) The 2D GIWAXS pattern and 1D profiles of the elastomer substrate.Figure 2. (a) Illustration of the components of the stretching device/sample stage. (b) Demonstration of the stretching device interfaced with the 1W1A beamline at BSRF. (c) A snapshot of the software interface and the associated functions.Figure 3. Illustration of the full procedure of preparing stretchable samples for in-situ GIWAXS measurements.Figure 4. (a–c) 1D curves and 2D patterns of out-of-plane and in-plane of the N2200 sample as a function of temperature for incident X-rays parallel to the stretching direction, respectively; (d) trend of the coherence length and g parameter of N2200; (e) pole figure extracted from the (010) diffraction peaks of the 2D GIWAXS patterns, and ω is the (010) polar angle; (f) trend of the rDoC vs. temperature when the incident X-rays are parallel to the stretching direction.Yu Chen, Saimeng Li, Zhibang Shen, Chunlong Sun, Jintao Feng, Long Ye. In-situ temperature-controllable grazing incidence X-ray scattering of semiconducting polymer thin films under stretching. Sci. China Mater. (2024).https://doi.org/10.1007/s40843-024-3121-2
点击左下角“阅读原文”,阅读以上文章PDF原文