在我们的大脑皮层中,有约三分之一的区域是负责处理视觉信息的。理解自然环境中丰富多样的视觉刺激如何被这些脑区处理,是视觉神经科学研究的终极目标。然而,视皮层的神经网络包含了数十亿的神经元,如此庞大的网络规模为全面解析其特性带来了巨大挑战。幸运的是,神经元在皮层上的排布并非杂乱无章,而是遵循了一定的组织规律。具有相似功能的神经元倾向于聚集在一起,形成集中处理特定特征的功能区。这种组织结构使我们能够以功能区为单位分解庞大的视皮层网络,从而简化问题。
视皮层具有怎样的功能分区,一直是研究者们关注的问题。研究发现初级视皮层存在编码朝向[1]、颜色[2]及空间频率[3]的功能区,更高级的V4及IT脑区具有编码圆弧[4]、特定形状物体[5]、乃至面孔[6]的功能区。这些研究通常采用“猜想-检验”的研究方式,即:先猜测哪种特征是视觉处理所关注的,再设计特征简化的刺激,检验视皮层中是否存在相应的功能区。这种借助简化刺激的研究有效地揭示了众多的功能区,但也遗留了许多问题。我们尚不清楚:用简化刺激得到的特征偏好是否反映了脑区真正关注的视觉特征,那些没有被预设特征激活的脑区又有何功能。
2024
Nature Communications
2024年7月30日,北京大学生命科学学院、北大-清华生命科学联合中心唐世明课题组在Nature Communications 杂志在线发表题为“Large-scale calcium imaging reveals a systematic V4 map for encoding natural scenes” 的研究论文。该研究结合长期稳定的宽场钙成像技术和深度学习建模分析,开发了测定视皮层功能区的系统化方法。这一方法不再需要研究者猜测所要关注的视觉特征,能够在海量自然场景中自动搜索出皮层的特征偏好。
研究团队用该方法研究了猕猴视皮层V4区的功能组织。通过连续多天的宽场钙成像,采集了V4脑区对近2万张自然图片的0.1毫米分辨率的皮层反应数据。利用这些数据,作者训练出了能够准确预测皮层对任意图片反应的深度学习模型。该模型提供了一个计算机中的“模拟大脑”,让研究者能够摆脱以往实验研究的限制,在模型上深入考察高维图片刺激下的神经反应特性。
图1. 用模型搜索皮层各处的偏好图片
借助模型在大量自然图片中搜索皮层各处的偏好图片,作者绘制出了V4脑区的偏好地图。基于偏好地图的聚类分析将V4划分成了多个偏好不同类型图片的功能区。这些功能区有的偏好特定颜色或纹理的表面、有的偏好特定朝向的边界、还有的偏好特定类型的物体。
图2. 对偏好地图做聚类得到的功能分区
作者进一步用模型对功能区偏好的自然图片进行了特征贡献分析,以明确是哪部分图片特征激活了皮层反应。结果显示,那些偏好特定类型物体的V4功能区,实际表征的是物体的局部元件,如面孔中的鼻子嘴巴、圆形物体的圆边。特征贡献分析还发现V4功能区的偏好特征在感受野内呈现出不同的分布模式:有些功能区偏好局域分布的形状相关特征,而另一些则偏好弥散分布的表面相关特征。这种以特征分散程度为标志的分区结构或许反映了某种神经计算的组织原则。
图3. 用特征贡献分析考察皮层偏好的图片特征
北京大学博士生王天冶、姚浩煊、卡内基梅隆大学教授Tai Sing Lee 为该论文并列第一作者。北京大学生命科学学院、北大-清华生命科学联合中心、北大麦戈文脑科学研究所唐世明教授为该论文的通讯作者。北京大学生命科学学院本科生洪佳怡,唐世明课题组技术员李扬、姜鸿飞,上海神经所Ian Max Andolina 参与了该研究的部分工作。本研究得到了科技创新2030-“脑科学与类脑研究”重大项目、国家自然科学基金、北大-清华生命科学联合中心和北大高性能计算平台的支持。
参考文献:
[1] Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J Physiol 195, 215-243, doi:10.1113/jphysiol.1968.sp008455 (1968).
[2] Livingstone, M. S. & Hubel, D. H. Anatomy and Physiology of a Color System in the Primate Visual-Cortex. Journal of Neuroscience 4, 309-356 (1984).
[3] Nauhaus, I., Nielsen, K. J., Disney, A. A. & Callaway, E. M. Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex. Nat Neurosci 15, 1683-1690, doi:10.1038/nn.3255 (2012).
[4] Jiang, R., Andolina, I. M., Li, M. & Tang, S. Clustered functional domains for curves and corners in cortical area V4. Elife 10, doi:10.7554/eLife.63798 (2021).
[5] Wang, G., Tanaka, K. & Tanifuji, M. Optical imaging of functional organization in the monkey inferotemporal cortex. Science 272, 1665-1668, doi:10.1126/science.272.5268.1665 (1996).
[6] Tsao, D. Y., Freiwald, W. A., Tootell, R. B. H. & Livingstone, M. S. A cortical region consisting entirely of face-selective cells. Science 311, 670-674, doi:10.1126/science.1119983 (2006).
唐世明:
北京大学生命科学学院、北大-清华生命科学联合中心,研究员、博士生导师。
实验室研究领域:
研究背景:脑认知与人工智能
如果你想要理解大脑认知的原理、想要突破人工智能,或者说想要构建一个物理系统,使之能像大脑一样感知和思考,应该从哪里入手呢?
广义上讲,大脑是一个计算系统,它大概是由不太复杂但数量庞大的计算单元(神经元)组成的。虽然在发育关键期,外部刺激对大脑神经网络布线有重要影响,但外部刺激和学习记忆应该不是决定性的因素。通过复杂的刺激训练,并不能使一个规模庞大、但结构简单的神经网络自动产生多少智能。事实上,亿万年缓慢的生物演化,使大脑具有复杂的网络初值,这应该才是智能的关键。如果我们还没有能力设计出一种比自然演化更高效的算法,自动搜索出智能系统,也没有足够高的智慧或者足够好的运气,直接设定智能系统的初值,那么,从神经生理层面,研究真实大脑的神经线路,将是值得考虑的做法。
视觉认知
最初级的智能起始于感觉系统,人脑信息输入有超过80%来自视觉,脑认知的内部运作也主要基于视觉概念。视觉认知主要功能是识别,另一个则是空间定位,这对应于生理学上的What和Where通路。视觉系统的智能体现在视觉不变性,偏离注视点或者大小不同的同一个客体,均能被视觉系统准确快速地识别,而这些视觉客体在视网膜甚至是初级视皮层上的激活区都发生了很大的变化,这也是理解视觉识别的最大障碍之一。知觉不变性对应了思维的基本元素——概念,进而也是大脑构建知识系统及产生智能的基石,就像是底层的操作系统和汇编语言,虽然艰涩难懂,但却是最终理解脑认知不能回避的问题。
研究方向
1960年代Hubel和Wiesel的发现或许已经解答了一条简单的线段是如何被识别出来的,即:对于可能出现在各个位置的、不同朝向的线段,大脑都预制了对应的检测细胞。这种简单策略在识别稍微复杂的图形的时候就会遇到困难,我们或许可以设想大脑预制了针对两条线段组合的细胞,那么三条线段或者更为复杂的图形又该怎么办呢?不幸的是,现实中的图形大多都比线段复杂,识别轮廓中局部线段的朝向,那只是个开始。真正的挑战在于,视觉系统是如何利用这些分散的朝向信息,识别出一个完整的图形。
我们研究那些比bar稍微复杂一点的图形,例如一条比bar长一点的线段,是如何被大脑识别出来的,进而了解视觉认知最基本的原理。为此,我们建立了先进的视觉认知行为和神经生理学实验平台,采用电极阵列、光学成像、分子生化、双光子等研究技术,探测视觉皮层复杂的神经线路,研究视觉系统如何同时产生形状识别的选择性和不变性。
点击“阅读原文”
查看该研究论文全文