↑ 点击上方“石墨烯联盟”关注我们
内容简介
本研究论文聚焦石墨烯和氧化石墨烯对聚己内酯骨组织工程支架影响的体外研究。通过增材制造生产的聚己内酯(PCL)支架是骨组织工程领域研究最多的结构之一。由于PCL的固有局限性,常采用碳纳米材料来增强PCL支架。尽管已有多项研究探索了石墨烯(G)和氧化石墨烯(GO)等碳纳米材料,但在精确设计支架的生物学和非生物学特性方面仍存在一些挑战。本文针对这一局限性,研究碳纳米材料增强的PCL支架在骨组织工程应用中的非生物特性(元素组成、表面、降解、热和机械性能)以及生物特性。结果表明,G和GO的加入提高了支架的表面性能(降低模量和润湿性)、材料结晶度、结晶温度和降解速率。然而,压缩模量、强度、表面硬度和细胞代谢活性等特性的变化在很大程度上取决于所用的增强材料类型。最后,基于实验结果,本文建立了一系列经验模型,用于描述支架的重量、纤维直径、孔隙率和机械性能随降解时间和碳纳米材料浓度变化的关系。本文的研究成果通过调整不同功能填料的类型和浓度,为设计具有调控特性的三维骨支架提供了依据。
引用本文(点击最下方阅读原文可下载PDF)
Hou Y, Wang W, Bartolo P, 2024. In vitro investigations on the effects of graphene and graphene oxide on polycaprolactone bone tissue engineering scaffolds. Bio-des Manuf 7(5):651–669. https://doi.org/10.1007/s42242-024-00280-8
文章导读
图1 图片摘要
图2 聚己内酯以及不同石墨烯和氧化石墨烯支架在降解开始(0 h)和结构完整性丧失之前的扫描电镜图像
图3 体外生物学表征
参考文献
上下滑动以阅览
1. Hou YH, Wang WG, Bartolo P (2022) Application of additively manufactured 3D scaffolds for bone cancer treatment: a review. Bio-Des Manuf 5(3):556–579. https://doi.org/10.1007/s42242-022-00182-7
2. Freed LE, Engelmayr GC Jr, Borenstein JT et al (2009) Advanced material strategies for tissue engineering scaffolds. Adv Mater 21(32–33):3410–3418. https://doi.org/10.1002/adma.200900303
3. Eckhart KE, Holt BD, Laurencin MG et al (2019) Covalent conjugation of bioactive peptides to graphene oxide for biomedical applications. Biomater Sci 7(9):3876–3885. https://doi.org/10.1039/c9bm00867e
4. Koski C, Bose S (2019) Effects of amylose content on the mechanical properties of starch-hydroxyapatite 3D printed bone scaffolds. Addit Manuf 30:100817. https://doi.org/10.1016/j.addma.2019.100817
5. Sarkar N, Bose S (2020) Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds. Acta Biomater 114:407–420. https://doi.org/10.1016/j.actbio.2020.07.006
6. Harun WSW, Kamariah MSIN, Muhamad N et al (2018) A review of powder additive manufacturing processes for metallic biomaterials. Powder Technol 327:128–151. https://doi.org/10.1016/j.powtec.2017.12.058
7. Wu H, Fahy WP, Kim S et al (2020) Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog Mater Sci 111:100638. https://doi.org/10.1016/j.pmatsci.2020.100638
8. Wang YX, Pereira RF, Peach C et al (2023) Robotic in situ bioprinting for cartilage tissue engineering. Int J Extreme Manuf 5(3):32004. https://doi.org/10.1088/2631-7990/acda67
9. Kalsi S, Singh J, Sehgal SS et al (2021) Biomaterials for tissue engineered bone scaffolds: a review. Mater Today Proc 81(2):888–893. https://doi.org/10.1016/j.matpr.2021.04.273
10. Baino F, Novajra G, Vitale-Brovarone C (2015) Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol 3:202. https://doi.org/10.3389/fbioe.2015.00202
11. Marques A, Miranda G, Silva F et al (2021) Review on current limits and potentialities of technologies for biomedical ceramic scaffolds production. J Biomed Mater Res B Appl Biomater 109(3):377–393. https://doi.org/10.1002/jbm.b.34706
12. Kulkarni SV, Nemade AC, Sonawwanay PD (2022) An overview on metallic and ceramic biomaterials. In: Dave HK, Dixit US, Nedelcu D (Eds.), Recent Advances in Manufacturing Processes and Systems. Springer Nature Singapore, Singapore, p.149–165. https://doi.org/10.1007/978-981-16-7787-8_11
13. Chapter Google Scholar Turnbull G, Clarke J, Picard F et al (2018) 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 3(3):278–314. https://doi.org/10.1016/j.bioactmat.2017.10.001
14. Pugliese R, Beltrami B, Regondi S et al (2021) Polymeric biomaterials for 3D printing in medicine: an overview. Ann 3D Print Med 2:100011. https://doi.org/10.1016/j.stlm.2021.100011
15. King WE, Bowlin GL (2021) Near-field electrospinning and melt electrowriting of biomedical polymers—progress and limitations. Polymers 13(7):1097. https://doi.org/10.3390/polym13071097
16. Eivazzadeh-Keihan R, Maleki A, de la Guardia M et al (2019) Carbon based nanomaterials for tissue engineering of bone: building new bone on small black scaffolds: a review. J Adv Res 18:185–201. https://doi.org/10.1016/j.jare.2019.03.011
17. Bellet P, Gasparotto M, Pressi S et al (2021) Graphene-based scaffolds for regenerative medicine. Nanomaterials 11(2):404. https://doi.org/10.3390/nano11020404
18. Amiryaghoubi N, Fathi M, Barzegari A et al (2021) Recent advances in polymeric scaffolds containing carbon nanotube and graphene oxide for cartilage and bone regeneration. Mater Today Commun 26:102097. https://doi.org/10.1016/j.mtcomm.2021.102097
19. Feng Y, Wang ZW, Zhang RX et al (2017) Anti-fouling graphene oxide based nanocomposites membrane for oil-water emulsion separation. Water Sci Technol 77(5):1179–1185. https://doi.org/10.2166/wst.2017.634
20. Porwal H, Grasso S, Cordero-Arias L et al (2014) Processing and bioactivity of 45S5 Bioglass®-graphene nanoplatelets composites. J Mater Sci Mater Med 25(6):1403–1413. https://doi.org/10.1007/s10856-014-5172-x
21. Lopes Nalesso PR, Wang WG, Hou YH et al (2021) In vivo investigation of 3D printed polycaprolactone/graphene electro-active bone scaffolds. Bioprinting 24:e00164. https://doi.org/10.1016/j.bprint.2021.e00164
22. Huang XM, Liu LZ, Zhou S et al (2020) Physical properties and device applications of graphene oxide. Front Phys 15(3):33301. https://doi.org/10.1007/s11467-019-0937-9
23. Jiang LL, Chen DY, Wang Z et al (2019) Preparation of an electrically conductive graphene oxide/chitosan scaffold for cardiac tissue engineering. Appl Biochem Biotechnol 188(4):952–964. https://doi.org/10.1007/s12010-019-02967-6
24. Fan ZJ, Wang JQ, Liu FZ et al (2016) A new composite scaffold of bioactive glass nanoparticles/graphene: synchronous improvements of cytocompatibility and mechanical property. Colloids Surf B Biointerfaces 145:438–446. https://doi.org/10.1016/j.colsurfb.2016.05.026
25. Gao CD, Liu TT, Shuai CJ et al (2014) Enhancement mechanisms of graphene in nano-58S bioactive glass scaffold: mechanical and biological performance. Sci Rep 4(1):4712. https://doi.org/10.1038/srep04712
26. Wang WG, Huang BY, Byun JJ et al (2019) Assessment of PCL/carbon material scaffolds for bone regeneration. J Mech Behav Biomed Mater 93:52–60. https://doi.org/10.1016/j.jmbbm.2019.01.020
27. Yang YW, Peng SP, Qi FW et al (2020) Graphene-assisted barium titanate improves piezoelectric performance of biopolymer scaffold. Mater Sci Eng C 116:111195. https://doi.org/10.1016/j.msec.2020.111195
28. Ding XL, Huang Y, Li XM et al (2021) Three-dimensional silk fibroin scaffolds incorporated with graphene for bone regeneration. J Biomed Mater Res A 109(4):515–523. https://doi.org/10.1002/jbm.a.37034
29. Zhu C, He MM, Sun D et al (2021) 3D-printed multifunctional polyetheretherketone bone scaffold for multimodal treatment of osteosarcoma and osteomyelitis. ACS Appl Mater Interfaces 13(40):47327–47340. https://doi.org/10.1021/acsami.1c10898
30. Wang GY, He CX, Yang WJ et al (2020) Surface-modified graphene oxide with compatible interface enhances poly-l-lactic acid bone scaffold. J Nanomater 2020:5634096. https://doi.org/10.1155/2020/5634096
31. Shuai CJ, Zeng ZC, Yang YW et al (2020) Graphene oxide assists polyvinylidene fluoride scaffold to reconstruct electrical microenvironment of bone tissue. Mater Des 190:108564. https://doi.org/10.1016/j.matdes.2020.108564
32. Bao DS, Sun JC, Gong M et al (2021) Combination of graphene oxide and platelet-rich plasma improves tendon–bone healing in a rabbit model of supraspinatus tendon reconstruction. Regen Biomater 8(6):rbab045. https://doi.org/10.1093/rb/rbab045
33. Zhang JH, Eyisoylu H, Qin XH et al (2021) 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Acta Biomater 121:637–652. https://doi.org/10.1016/j.actbio.2020.12.026
34. Dinescu S, Ionita M, Ignat SR et al (2019) Graphene oxide enhances chitosan-based 3D scaffold properties for bone tissue engineering. Int J Mol Sci 20(20):5077. https://doi.org/10.3390/ijms20205077
35. Yang YW, Cheng Y, Peng SP et al (2021) Microstructure evolution and texture tailoring of reduced graphene oxide reinforced Zn scaffold. Bioact Mater 6(5):1230–1241. https://doi.org/10.1016/j.bioactmat.2020.10.017
36. Shadianlou F, Foorginejad A, Yaghoubinezhad Y (2022) Hydrothermal synthesis of zirconia-based nanocomposite powder reinforced by graphene and its application for bone scaffold with 3D printing. Adv Powder Technol 33(2):103406. https://doi.org/10.1016/j.apt.2021.103406
37. Maleki-Ghaleh H, Hossein Siadati M, Fallah A et al (2021) Effect of zinc-doped hydroxyapatite/graphene nanocomposite on the physicochemical properties and osteogenesis differentiation of 3D-printed polycaprolactone scaffolds for bone tissue engineering. Chem Eng J 426:131321. https://doi.org/10.1016/j.cej.2021.131321
38. Zhou K, Yu P, Shi XJ et al (2019) Hierarchically porous hydroxyapatite hybrid scaffold incorporated with reduced graphene oxide for rapid bone ingrowth and repair. ACS Nano 13(8):9595–9606. https://doi.org/10.1021/acsnano.9b04723
39. Bahrami S, Baheiraei N, Shahrezaee M (2021) Biomimetic reduced graphene oxide coated collagen scaffold for in situ bone regeneration. Sci Rep 11(1):16783. https://doi.org/10.1038/s41598-021-96271-1
40. Shuai C, Peng B, Liu M et al (2021) A self-assembled montmorillonite-carbon nanotube hybrid nanoreinforcement for poly-l-lactic acid bone scaffold. Mater Today Adv 11:100158. https://doi.org/10.1016/j.mtadv.2021.100158
41. Huang BY, Vyas C, Roberts I et al (2019) Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration. Mater Sci Eng C 98:266–278. https://doi.org/10.1016/j.msec.2018.12.100
42. Feng P, Wang K, Shuai Y et al (2022) Hydroxyapatite nanoparticles in situ grown on carbon nanotube as a reinforcement for poly (ε-caprolactone) bone scaffold. Mater Today Adv 15:100272. https://doi.org/10.1016/j.mtadv.2022.100272
43. Lemos R, Maia FR, Ribeiro VP et al (2021) Carbon nanotube-reinforced cell-derived matrix-silk fibroin hierarchical scaffolds for bone tissue engineering applications. J Mater Chem B 9(46):9561–9574. https://doi.org/10.1039/d1tb01972d
44. Hou YH, Wang WG, Bártolo P (2020) Investigating the effect of carbon nanomaterials reinforcing poly(ε-caprolactone) printed scaffolds for bone repair applications. Int J Bioprint 6(2):266. https://doi.org/10.18063/ijb.v6i2.266
45. Hou YH, Wang WG, Bártolo P (2020) Novel poly(ɛ-caprolactone)/graphene scaffolds for bone cancer treatment and bone regeneration. 3D Print Addit Manuf 7(5):222–229. https://doi.org/10.1089/3dp.2020.0051
46. Pitt CG, Chasalow FI, Hibionada YM et al (1981) Aliphatic polyesters. I. The degradation of poly(ϵ-caprolactone) in vivo. J Appl Polym Sci 26(11):3779–3787. https://doi.org/10.1002/app.1981.070261124
47. Sánchez-González S, Diban N, Urtiaga A (2018) Hydrolytic degradation and mechanical stability of poly(ε-caprolactone)/reduced graphene oxide membranes as scaffolds for in vitro neural tissue regeneration. Membranes 8(1):12. https://doi.org/10.3390/membranes8010012
48. ASTM International (2016) Standard test method for compressive properties of rigid cellular plastics. West Conshohocken, PA
49. ASTM International (2015) Standard test method for compressive properties of rigid plastics. West Conshohocken, PA
50. Wang MM, Wu HH, Shen CR et al (2019) Seaweed-like 2D–2D architecture of MoS2/rGO composites for enhanced selective aerobic oxidative coupling of amines. ChemCatChem 11(7):1935–1942. https://doi.org/10.1002/cctc.201900156
51. Kuznetsov VL, Bokova-Sirosh SN, Moseenkov SI et al (2014) Raman spectra for characterization of defective CVD multi-walled carbon nanotubes. Phys Status Solidi B 251(12):2444–2450. https://doi.org/10.1002/pssb.201451195
52. Ai J, Yang L, Liao GY et al (2018) Applications of graphene oxide blended poly(vinylidene fluoride) membranes for the treatment of organic matters and its membrane fouling investigation. Appl Surf Sci 455:502–512. https://doi.org/10.1016/j.apsusc.2018.05.162
53. Kumar S, Azam D, Raj S et al (2016) 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications. J Biomed Mater Res B Appl Biomater 104(4):732–749. https://doi.org/10.1002/jbm.b.33549
54. Seok JM, Choe G, Lee SJ et al (2021) Enhanced three-dimensional printing scaffold for osteogenesis using a mussel-inspired graphene oxide coating. Mater Des 209:109941. https://doi.org/10.1016/j.matdes.2021.109941
55. Song JQ, Gao HC, Zhu GL et al (2015) The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon 95:1039–1050. https://doi.org/10.1016/j.carbon.2015.09.011
56. Haji Mohammadi Gohari P, Haghbin Nazarpak M, Solati-Hashjin M (2021) The effect of adding reduced graphene oxide to electrospun polycaprolactone scaffolds on MG-63 cells activity. Mater Today Commun 27:102287. https://doi.org/10.1016/j.mtcomm.2021.102287
57. Weaver JK (1966) The microscopic hardness of bone. J Bone Joint Surg Am 48(2):273–288. https://doi.org/10.2106/00004623-196648020-00006
58. Luo CQ, Liao JY, Zhu ZL et al (2019) Analysis of mechanical properties and mechanical anisotropy in canine bone tissues of various ages. Biomed Res Int 2019:3503152. https://doi.org/10.1155/2019/3503152
59. Lamour G, Hamraoui A, Buvailo A et al (2010) Contact angle measurements using a simplified experimental setup. J Chem Educ 87(12):1403–1407. https://doi.org/10.1021/ed100468u
60. Dorrer C, Rühe J (2008) Drops on microstructured surfaces coated with hydrophilic polymers: Wenzel’s model and beyond. Langmuir 24(5):1959–1964. https://doi.org/10.1021/la7029938
61. Khosrozadeh A, Rasuli R, Hamzeloopak H et al (2021) Wettability and sound absorption of graphene oxide doped polymer hydrogel. Sci Rep 11(1):15949. https://doi.org/10.1038/s41598-021-95641-z
62. Liu HS, Liu XY, Zhao FB et al (2020) Preparation of a hydrophilic and antibacterial dual function ultrafiltration membrane with quaternized graphene oxide as a modifier. J Colloid Interface Sci 562:182–192. https://doi.org/10.1016/j.jcis.2019.12.017
63. Al-Azzam N, Alazzam A (2022) Micropatterning of cells via adjusting surface wettability using plasma treatment and graphene oxide deposition. PLoS ONE 17(6):e0269914. https://doi.org/10.1371/journal.pone.0269914
64. Junaidi NFD, Othman NH, Fuzil NS et al (2021) Recent development of graphene oxide-based membranes for oil–water separation: a review. Sep Purif Technol 258:118000. https://doi.org/10.1016/j.seppur.2020.118000
65. Kołodziej A, Długoń E, Świętek M et al (2021) A Raman spectroscopic analysis of polymer membranes with graphene oxide and reduced graphene oxide. J Compos Sci 5(1):20. https://doi.org/10.3390/jcs5010020
66. Sayyar S, Murray E, Thompson BC et al (2013) Covalently linked biocompatible graphene/polycaprolactone composites for tissue engineering. Carbon 52:296–304. https://doi.org/10.1016/j.carbon.2012.09.031
67. Murray E, Thompson BC, Sayyar S (2015) Enzymatic degradation of graphene/polycaprolactone materials for tissue engineering. Polym Degrad Stabil 111:71–77. https://doi.org/10.1016/j.polymdegradstab.2014.10.010
68. Wang GS, Wei ZY, Sang L et al (2013) Morphology, crystallization and mechanical properties of poly(ɛ-caprolactone)/graphene oxide nanocomposites. Chin J Polym Sci 31(8):1148–1160. https://doi.org/10.1007/s10118-013-1278-8
69. Hua L, Kai WH, Yang JJ et al (2010) A new poly(l-lactide)-grafted graphite oxide composite: facile synthesis, electrical properties and crystallization behaviors. Polym Degrad Stabil 95(12):2619–2627. https://doi.org/10.1016/j.polymdegradstab.2010.07.023
70. Castilla-Cortázar I, Vidaurre A, Marí B et al (2019) Morphology, crystallinity, and molecular eeight of poly(ε-caprolactone)/graphene oxide hybrids. Polymers 11(7):1099. https://doi.org/10.3390/polym11071099
71. Li LY, Li CY, Ni CY (2006) Polymer crystallization-driven, periodic patterning on carbon nanotubes. J Am Chem Soc 128(5):1692–1699. https://doi.org/10.1021/ja056923h
72. Uehara H, Kato K, Kakiage M et al (2007) Single-walled carbon nanotube nucleated solution-crystallization of polyethylene. J Phys Chem C 111(51):18950–18957. https://doi.org/10.1021/jp074005v
73. Rai R, Tallawi M, Frati C et al (2015) Bioactive electrospun fibers of poly(glycerol sebacate) and poly(ε-caprolactone) for cardiac patch application. Adv Healthc Mater 4(13):2012–2025. https://doi.org/10.1002/adhm.201500154
74. Fakhrali A, Nasari M, Poursharifi N et al (2021) Biocompatible graphene-embedded PCL/PGS-based nanofibrous scaffolds: a potential application for cardiac tissue regeneration. J Appl Polym Sci 138(40):51177. https://doi.org/10.1002/app.51177
75. Shuai CJ, Li Y, Yang WJ et al (2020) Graphene oxide induces ester bonds hydrolysis of poly-l-lactic acid scaffold to accelerate degradation. Int J Bioprint 6(1):249. https://doi.org/10.18063/ijb.v6i1.249
76. Talebi A, Labbaf S, Atari M et al (2021) Polymeric nanocomposite structures based on functionalized graphene with tunable properties for nervous tissue replacement. ACS Biomater Sci Eng 7(9):4591–4601. https://doi.org/10.1021/acsbiomaterials.1c00744
77. Thomson RC, Yaszemski MJ, Powers JM et al (1996) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed 7(1):23–38. https://doi.org/10.1163/156856295X00805
78. Williams JM, Adewunmi A, Schek RM et al (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827. https://doi.org/10.1016/j.biomaterials.2004.11.057
79. Lotz JC, Gerhart TN, Hayes WC (1990) Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J Comput Assist Tomogr 14(1):107–114. https://doi.org/10.1097/00004728-199001000-00020
80. Phiri J, Johansson LS, Gane P et al (2018) A comparative study of mechanical, thermal and electrical properties of graphene-, graphene oxide- and reduced graphene oxide-doped microfibrillated cellulose nanocomposites. Compos B Eng 147:104–113. https://doi.org/10.1016/j.compositesb.2018.04.018
81. Ramazani S, Karimi M (2015) Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: morphological, mechanical and structural properties. Mater Sci Eng C Mater Biol Appl 56:325–334. https://doi.org/10.1016/j.msec.2015.06.045
82. Engler AJ, Sen S, Sweeney HL et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. https://doi.org/10.1016/j.cell.2006.06.044
83. Blacklock J, Vetter A, Lankenau A et al (2010) Tuning the mechanical properties of bioreducible multilayer films for improved cell adhesion and transfection activity. Biomaterials 31(27):7167–7174. https://doi.org/10.1016/j.biomaterials.2010.06.002
84. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143. https://doi.org/10.1126/science.1116995
85. Lee WC, Lim CHYX, Shi H et al (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9):7334–7341. https://doi.org/10.1021/nn202190c
86. Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28(20):3074–3082. https://doi.org/10.1016/j.biomaterials.2007.03.013
87. Ranella A, Barberoglou M, Bakogianni S et al (2010) Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater 6(7):2711–2720. https://doi.org/10.1016/j.actbio.2010.01.016
88. Cooper LF, Zhou YS, Takebe J et al (2006) Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Biomaterials 27(6):926–936. https://doi.org/10.1016/j.biomaterials.2005.07.009
89. Rausch-fan X, Qu Z, Wieland M et al (2008) Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dent Mater 24(1):102–110. https://doi.org/10.1016/j.dental.2007.03.001
90. Liao CZ, Li YC, Tjong SC (2018) Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. Int J Mol Sci 19(11):3564. https://doi.org/10.3390/ijms19113564
91. Cicuéndez M, Casarrubios L, Barroca N et al (2021) Benefits in the macrophage response due to graphene oxide reduction by thermal treatment. Int J Mol Sci 22(13):6701. https://doi.org/10.3390/ijms22136701
92. Matesanz MC, Vila M, Feito MJ et al (2013) The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations. Biomaterials 34(5):1562–1569. https://doi.org/10.1016/j.biomaterials.2012.11.001
93. Francolini I, Perugini E, Silvestro I et al (2019) Graphene oxide oxygen content affects physical and biological properties of scaffolds based on chitosan/graphene oxide conjugates. Materials 12(7):1142. https://doi.org/10.3390/ma12071142
94. Wang D, Zhu L, Chen JF et al (2015) Can graphene quantum dots cause DNA damage in cells? Nanoscale 7(21):9894–9901. https://doi.org/10.1039/c5nr01734c
95. Li Y, Liu Y, Fu YJ et al (2012) The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33(2):402–411. https://doi.org/10.1016/j.biomaterials.2011.09.091
96. Wu JQ, Kosten TR, Zhang XY (2013) Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 46:200–206. https://doi.org/10.1016/j.pnpbp.2013.02.015
97. Wang YF, Wang JL, Hao H et al (2016) In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano 10(11):9927–9937. https://doi.org/10.1021/acsnano.6b03835
98. Achawi S, Feneon B, Pourchez J et al (2021) Assessing biological oxidative damage induced by graphene-based materials: an asset for grouping approaches using the FRAS assay. Regul Toxicol Pharmacol 127:105067. https://doi.org/10.1016/j.yrtph.2021.105067
99. Hou YH, Wang WG, Bartolo P (2022) Investigation of polycaprolactone for bone tissue engineering scaffolds: in vitro degradation and biological studies. Mater Des 216:110582. https://doi.org/10.1016/j.matdes.2022.110582
信息来源:生物设计与制造BDM
我们的视频号
“石墨烯联盟”视频号里面,有备受瞩目的“烯”世奇材,有惊喜连连的大咖开讲,有生动有趣的科普视频,甚至还有不定期的“福利”乱入...欢迎大家扫码关注我们的视频号,将满满的干货收入囊中~
我们的视频号