讲座 | Dynamics of an SIR Model on Complex Networks

文摘   2024-07-15 08:30   广东  

报告人:牛瑞吾

主持人:吴晓群

日期:2024.07.15

时间:10:00am

地点:深圳大学致真楼801


Abstract



We present an SIR model based on a dynamic flow network that describes the epidemic process on complex metapopulation networks. This model views population regions as interconnected nodes and describes the evolution of each region using a system of differential equations. The next-generation matrix method is used to derive the global basic reproduction number for three cases: a general network with homogeneous infection rates in all regions, a fully connected network, and a star network with heterogeneous infection and recovery rates. For the homogeneous case, we show that this global basic reproduction number is independent of the migration rates between regions. 


However, the rate of convergence of each region to an equilibrium state exhibits a much larger variance in random (Erdos-Renyi) networks compared to small-scale (Barabasi-Albert) networks.  For the general heterogeneous case, we report interesting results, namely that the global basic reproduction number decays exponentially with respect to the smallest non-zero Laplacian eigenvalue (algebraic connectivity). Furthermore, we demonstrate both analytically and numerically that as the network's algebraic connectivity increases, either by increasing the average node degree of each region or the global migration rate, the global basic reproduction number decreases and converges to the ratio of the average local infection rate to the average local recovery rate, meaning that the lower bound of the global basic reproduction rate does not equal the mean of local basic reproduction rates.



Bio



牛瑞吾,2019年博士毕业于武汉大学数学与统计学院,曾在深圳大学担任专职副研究员一职,并于期间获得一项国家自然科学基金青年项目,目前在香港城市大学做博士后工作。主要研究方向是:复杂网络,疾病传播,非线性动力系统。



深圳大学可视计算研究中心
Visual Computing Research Center
----------------------------------
https://vcc.tech


中心以计算机图形学、计算机视觉、可视化、机器人、人工智能、人机交互为学科基础,致力促进多个学科的深入交叉与集成创新,重点推进大规模静动态数据获取与优化融合、多尺度几何建模与图像处理、可视内容生成与仿真渲染、复杂场景重建与识别理解、三维移动协同感知与人机交互、智能模拟学习与强化认知、海量信息可视化与可视分析等方面的科学研究。

📫
转载及合作:szuvcc@gmail.com

深圳大学可视计算研究中心
深圳大学可视计算研究中心致力于大力提升可视计算科学研究与高等教育水平,以计算机图形学、计算机视觉、人机交互、机器学习、机器人、可视化和可视分析为学科基础,促进多个学科的深入交叉和集成创新。详见官网: vcc.tech
 最新文章