髓母细胞瘤是儿童中最常见的恶性脑部肿瘤之一,其中MBGRP3亚型特征为c-MYC(MYC)高表达,且治疗进展有限。近日,来自英国的研究组在 Neuro Oncology 发表了题为 MYC-dependent upregulation of the de novo serine and glycine synthesis pathway is a targetable metabolic vulnerability in group 3 medulloblastoma 的论文。该研究通过代谢分析和细胞模型揭示了MYC依赖性MBGRP3细胞依赖于从头丝氨酸和甘氨酸途径促进增殖,且容易受到其遗传和药理学干扰。特别是磷酸甘油酸脱氢酶(PHGDH)在MYC扩增的原发性MBGRP3肿瘤中高表达,并与低生存率相关。表明MYC驱动的增强的从头丝氨酸生物合成是MBGRP3肿瘤的一种新的代谢适应性变化,为MBGRP3的靶向治疗提供了新的潜在策略。研究人员建立了三个独立的MYC依赖性MBGRP3细胞模型,分别是D425 med、HDMB03和D283med,这些细胞系均过表达MYC。通过在四环素应答启动子控制下,使用含有Tet-on载体和靶向MYC的shRNA(shMYC1和shMYC2)的慢病毒转导,以及非沉默对照(shNS),实现了MYC的可诱导敲低。在所有模型中,Dox诱导的shMYC1在72小时后显著敲低MYC,而shMYC2的效果较温和。与未处理或shNS对照相比,Dox诱导的shMYC1导致细胞增殖减慢,且这种增殖缺陷与MYC敲低程度一致。研究表明,所有模型均持续依赖MYC生长(即“MYC成瘾”),并适用于MYC依赖性生物学研究。72小时的Dox处理被确定为达到最大MYC敲低和开始生长抑制的有效时间点,而shNS对照为区分MYC依赖效应和Dox相关处理效应提供了背景。
图1 MYC在MBGRP3模型中的依赖性保留,以及通过强力霉素诱导MYC表达下调后,对髓母细胞瘤细胞增殖的影响。在探究MYC对MBGRP3代谢影响的研究中,研究人员采取了三个步骤:- 关注甘氨酸等关键代谢物(图2D、E,补充图2D、E和补充图3)
图2 MYC表达扰动如何改变MBGRP3细胞的代谢物景观,以及通过HRMAS代谢物谱分析鉴定的重要代谢物变化
MYC KD导致SGP基因下调,这种下调程度与MYC KD的严重性相匹配。在蛋白表达层面,SGP酶的表达也展现出MYC依赖性变化,尤其是PHGDH(SGP的限速酶)的表达显著降低。这显示MYC对SGP酶的转录和蛋白表达具有显著影响。MYC KD后,PHGDH的活性同样受到抑制。与MYC表达的细胞相比,MYC KD细胞的PHGDH活性降低。这进一步证实了MYC对SGP途径的调控作用。通过采用13C-葡萄糖示踪技术,研究人员评估了葡萄糖衍生中间体向SGP的分配。结果表明,在MYC表达细胞中,SGP途径中葡萄糖衍生中间体的糖酵解转换速率更快,分配也更多。然而,在MYC KD细胞中,这种转换和分配均有所减少。此外,MYC KD后,细胞对外源丝氨酸和甘氨酸的依赖性增加,以补充细胞内库。研究人员还通过CRISPR介导的耗尽方法去除了PHGDH,观察到所有MYC依赖性细胞系的生长均受到抑制。这表明PHGDH在维持MYC驱动的MBGRP3细胞的增殖能力中发挥着关键作用。进一步地,当去除生长培养基中的丝氨酸或甘氨酸后,PHGDH下调的MBGRP3细胞对外源丝氨酸和甘氨酸的依赖性增强。这些数据表明,MYC过表达的MBGRP3细胞通过上调PHGDH来维持足够的细胞内丝氨酸和甘氨酸水平,从而满足其生长需求。研究人员又在3个MYC依赖性MBGRP3模型中测试了PHGDH的变构抑制剂NCT-503。研究结果显示髓母细胞瘤细胞对PHGDH抑制的敏感性具有MYC依赖性,这种敏感性导致细胞生长和增殖减少。之后,研究人员利用皮下异种移植和基因工程小鼠模型,探究NCT-503对体内髓母细胞瘤存活的影响。NCT-503具有血脑屏障渗透性,能在全身给药后于大脑中积累。实验结果显示,NCT-503对小鼠健康无害,且在MYC扩增的MBGRP3细胞皮下肿瘤异种移植模型中,显著提高了小鼠的存活率。图3 MYC驱动的MBGRP3细胞表现出从头丝氨酸和甘氨酸合成途径的上调为了更准确地模拟先天肿瘤的发展和药理作用,研究人员使用了基因工程模型(GEMM),该模型包含自发MYCn驱动的MBGRP3肿瘤。此模型中,GTML(Glt1-tTA/TRE-MYCN-Luc)神经球在体外对NCT-503表现出敏感性,且NCT-503治疗显著抑制了GTML神经球中PHGDH的活性。进一步在患有自发性髓母细胞瘤的GTML小鼠中,NCT-503治疗显著减轻了肿瘤负荷,并延长了小鼠的生存时间。这一结果与异种移植模型的结果非常相似,表明NCT-503通过抑制PHGDH可以减缓肿瘤进展,并在荷瘤小鼠中产生总体生存益处。图4 MBGRP3细胞以MYC依赖的方式对新生SGP的药物抑制敏感为验证PHGDH作为MYC驱动的髓母细胞瘤(MB)的治疗靶点,研究人员在大型代表性队列中评估了PHGDH的蛋白表达。在原发性髓母细胞瘤中,PHGDH的表达高于正常小脑组织,且在MBWNT和MBSHH中表达最强,而在MBGRP3和MBGRP4中表达相似。MYC和MYCN扩增分别与MBGRP3和MBSHH中较高的PHGDH表达相关,这表明在这些MB亚组中,MYC和MYCN作为致癌驱动因素与PHGDH上调之间存在重要联系。然而,MYCN扩增与MBGRP4的风险增加无关,且在该组中也不与PHGDH表达相关。上述结果支持PHGDH作为髓母细胞瘤治疗靶点的临床相关性,特别是在MYC扩增的MBGRP3中观察到较高的PHGDH表达,这定义了从PHGDH抑制治疗中可能获益最多的患者群体。此外,MYC扩增的MBSHH也显示出与PHGDH的相关性,表明MYC依赖性通路在低风险髓母细胞瘤组中可能存在机制趋同。撰文
责编
制作
排版 | Sheila 校对 | uu
延伸阅读
靶向PRTG显示对三型髓母细胞瘤的潜在疗效
*本文由深圳市拾玉儿童公益基金会“儿童肿瘤前沿”团队编译或约稿,文中图表均源引自文献原文。本文著作权归文章作者所有,欢迎个人转发分享,未经允许禁止转载,作者拥有所有法定权利,违者必究。如需转载,请留言或联系shiyu@curekids.cn。本文旨在分享儿童肿瘤科研前沿成果,不是治疗方案推荐。如需获得疾病治疗方案指导,请前往正规医院就诊。
▼滑动查看更多▼
Background: Group 3 medulloblastoma (MBGRP3) represents around 25% of medulloblastomas and is strongly associated with c-MYC (MYC) amplification, which confers significantly worse patient survival. Although elevated MYC expression is a significant molecular feature in MBGRP3, direct targeting of MYC remains elusive, and alternative strategies are needed. The metabolic landscape of MYC-driven MBGRP3 is largely unexplored and may offer novel opportunities for therapies.
Methods: To study MYC-induced metabolic alterations in MBGRP3, we depleted MYC in isogenic cell-based model systems, followed by 1H high-resolution magic-angle spectroscopy (HRMAS) and stable isotope-resolved metabolomics, to assess changes in intracellular metabolites and pathway dynamics.
Results: Steady-state metabolic profiling revealed consistent MYC-dependent alterations in metabolites involved in one-carbon metabolism such as glycine. 13C-glucose tracing further revealed a reduction in glucose-derived serine and glycine (de novo synthesis) following MYC knockdown, which coincided with lower expression and activity of phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in this pathway. Furthermore, MYC-overexpressing MBGRP3 cells were more vulnerable to pharmacological inhibition of PHGDH compared to those with low expression. Using in vivo tumor-bearing genetically engineered and xenograft mouse models, pharmacological inhibition of PHGDH increased survival, implicating the de novo serine/glycine synthesis pathway as a pro-survival mechanism sustaining tumor progression. Critically, in primary human medulloblastomas, increased PHGDH expression correlated strongly with both MYC amplification and poorer clinical outcomes.
Conclusions: Our findings support a MYC-induced dependency on the serine/glycine pathway in MBGRP3 that represents a novel therapeutic treatment strategy for this poor prognosis disease group.
DOI: 10.1093/neuonc/noae179