MicrobiomeStatPlot | STAMP扩展柱状图教程STAMP extended error bar plot

学术   2024-12-19 07:03   中国香港  

STAMP分析简介

在微生物多样性分析中,STAMP(Statistical analysis of megagenomic profiles)分析常常用来比较多组样本之间物种或功能相对丰度的差异情况,能够得到组间具有显著差异的物种和功能。STAMP分析通过扩展柱状图(Extended error bar)的形式来展示最终的结果。

也可以用STAMP软件完成功能更多的差异分析,网站地址为https://beikolab.cs.dal.ca/software/STAMP,软件的使用可参考https://mp.weixin.qq.com/s/1EFYt2KJOIx_zmT5Xltkeg; https://mp.weixin.qq.com/s/2zSvLgcJ2pGv7MyMLKaICw

标签:#微生物组数据分析  #MicrobiomeStatPlot   #R语言可视化 #STAMP

作者:First draft(初稿):Defeng Bai(白德凤);Proofreading(校对):Ma Chuang(马闯) and Jiani Xun(荀佳妮);Text tutorial(文字教程):Defeng Bai(白德凤)

源代码及测试数据链接:

https://github.com/YongxinLiu/MicrobiomeStatPlot/项目中目录 3.Visualization_and_interpretation/STAMP_R

或公众号后台回复“MicrobiomeStatPlot”领取


STAMP分析案例

这是来自于温州医科大学附属医院Chen Gang团队和温州医科大学Wang Yi团队2023年发表于Gut Microbes上的一篇论文,论文题目为:A distinct microbiota signature precedes the clinical diagnosis of hepatocellular carcinoma. https://doi.org/10.1080/19490976.2023.2201159

图 5 |  前瞻性队列中 HCC 组和对照组之间的主要 KEGG 通路与粪便样本的宏基因组测序数据。

Diamond 软件检测到两组肠道菌群中基于鸟枪宏基因组序列的差异 KEGG 通路。列出了前 20 个项目以及相应的 95% 置信区间和调整后的 p 值。

结果

同时,KEGG通路分析通过宏基因组测序发现了HCC中多条生物代谢通路(图5)。方法学上,构建了Diamond算法对两组间KEGG通路进行注释和计算统计差异(图5,调整后p < 0.05)。

STAMP分析R语言实战

源代码及测试数据链接:

https://github.com/YongxinLiu/MicrobiomeStatPlot/

或公众号后台回复“MicrobiomeStatPlot”领取

软件包安装

# 基于CRAN安装R包,检测没有则安装p_list = c("tidyverse", "ggsci", "magrittr", "ggh4x", "rstatix", "ggsignif", "ggpubr",           "ggnewscale", "patchwork", "reshape2", "ggplot2")for(p in p_list){if (!requireNamespace(p)){install.packages(p)}    library(p, character.only = TRUE, quietly = TRUE, warn.conflicts = FALSE)}
# install.packages("devtools")# 基于github安装library(devtools)if(!requireNamespace("ggchicklet", quietly = TRUE))  install_github("hrbrmstr/ggchicklet")
# 加载R包 Load the packagesuppressWarnings(suppressMessages(library(ggchicklet)))suppressWarnings(suppressMessages(library(tidyverse)))suppressWarnings(suppressMessages(library(ggsci)))suppressWarnings(suppressMessages(library(magrittr)))suppressWarnings(suppressMessages(library(ggh4x)))suppressWarnings(suppressMessages(library(rstatix)))suppressWarnings(suppressMessages(library(ggsignif)))suppressWarnings(suppressMessages(library(ggpubr)))suppressWarnings(suppressMessages(library(ggnewscale)))suppressWarnings(suppressMessages(library(patchwork)))suppressWarnings(suppressMessages(library(reshape2)))suppressWarnings(suppressMessages(library(ggplot2)))

实战

# 载入数据# Load datadata <- read.table("data/pathway.txt",header = TRUE,row.names = 1,sep = "\t")group <- read.table("data/group.txt",header = FALSE,sep = "\t")group = group[-1,]# 构建矩阵# Construct matrixrow=as.numeric(length(row.names(data))) col=as.numeric(length(colnames(data))) col_sum=rep(colSums(data), row)col_sum=matrix(col_sum, nrow = col, ncol = row)# 计算相对丰度# Calcualate relative abundancedata2=data/t(col_sum)colSums(data2)#>  Healthy01  Healthy02  Healthy03  Healthy04  Healthy05  Healthy06  Healthy07 #>          1          1          1          1          1          1          1 #>  Healthy08  Healthy09  Healthy10  Healthy11  Healthy12  Healthy13  Healthy14 #>          1          1          1          1          1          1          1 #>  Healthy15  Healthy16  Healthy17  Healthy18  Healthy19  Healthy20 Patients01 #>          1          1          1          1          1          1          1 #> Patients02 Patients03 Patients04 Patients05 Patients06 Patients07 Patients08 #>          1          1          1          1          1          1          1 #> Patients09 Patients10 Patients11 Patients12 Patients13 Patients14 Patients15 #>          1          1          1          1          1          1          1 #> Patients16 Patients17 Patients18 Patients19 Patients20 #>          1          1          1          1          1# 过滤掉平均丰度低于5%的功能分类# Filter out functional categories with an average abundance below 5%data = data2data <- data*100data <- data %>% filter(apply(data,1,mean) > 0.5)data <- t(data)data1 <- data.frame(data,group$V2)colnames(data1) <- c(colnames(data),"Group")data1$Group <- as.factor(data1$Group)# 不符合正态分布,使用非参检验# Does not conform to normal distribution, use non-parametric test# shapiro.test(data1$`Amino acid metabolism`)# shapiro.test(data1$`Biosynthesis of other secondary metabolites`)# shapiro.test(data1$Alistipes_putredinis)# diff <- data1 %>% #     select_if(is.numeric) %>%#     map_df(~ broom::tidy(t.test(. ~ Group,data = data1)), .id = 'var')# # diff$p.value <- p.adjust(diff$p.value,"bonferroni")# diff <- diff %>% filter(p.value < 0.05)# 非参检验# wilcox testlibrary(tidyverse)diff <- data1 %>%     select_if(is.numeric) %>%    map_df(~ broom::tidy(wilcox.test(. ~ Group,data = data1, conf.int = TRUE)), .id = 'var')diff$p.value <- p.adjust(diff$p.value,"BH")diff <- diff %>% filter(p.value < 0.05)# write.csv(diff, "results/Pathway_wixcox_test_0.05_abun_filter_0.05.csv")## 绘图数据构建(Data construction)## 左侧条形图(Left bar plot)abun.bar <- data1[,c(diff$var,"Group")] %>%     rstatix::gather(variable,value,-Group) %>%     group_by(variable,Group) %>%     summarise(Mean = mean(value))## 右侧散点图(Scatter plot on the right)diff.mean <- diff[,c("var","estimate","conf.low","conf.high","p.value")]diff.mean$Group <- c(ifelse(diff.mean$estimate >0,levels(data1$Group)[1],                            levels(data1$Group)[2]))diff.mean <- diff.mean[order(diff.mean$estimate,decreasing = TRUE),]## 左侧条形图(Left bar plot)cbbPalette <- c("#5ebcc2","#d9a285")abun.bar$variable <- factor(abun.bar$variable,levels = rev(diff.mean$var))p1 <- ggplot(abun.bar,aes(variable,Mean,fill = Group)) +    scale_x_discrete(limits = levels(diff.mean$var)) +    coord_flip() +    xlab("") +    ylab("Mean proportion (%)") +    theme(panel.background = element_rect(fill = 'transparent'),          panel.grid = element_blank(),          axis.ticks.length = unit(0.2,"lines"),           axis.ticks = element_line(color='black'),          axis.line = element_line(colour = "black"),          axis.title.x=element_text(colour='black', size=9,face = "bold"),          axis.text=element_text(colour='black',size=7,face = "bold"),          legend.title=element_blank(),          legend.text=element_text(size=12,face = "bold",colour = "black",                                   margin = margin(r = 20)),          #legend.position = c(-0.1,0.1),          legend.position = "top",          legend.direction = "horizontal",          legend.key.width = unit(0.8,"cm"),          legend.key.height = unit(0.5,"cm"))#p1for (i in 1:(nrow(diff.mean) - 1))     p1 <- p1 + annotate('rect', xmin = i+0.5, xmax = i+1.5, ymin = -Inf, ymax = Inf,                         fill = ifelse(i %% 2 == 0, 'white', 'gray95'))p1 <- p1 +     geom_bar(stat = "identity",position = "dodge",width = 0.7,colour = "black",linewidth = 0.1) +    scale_fill_manual(values=cbbPalette)#p1## 右侧散点图(Scatter plot on the right)diff.mean$var <- factor(diff.mean$var,levels = levels(abun.bar$variable))diff.mean$p.value <- signif(diff.mean$p.value,3)diff.mean$p.value <- as.character(diff.mean$p.value)p2 <- ggplot(diff.mean,aes(var,estimate,fill = Group)) +    theme(panel.background = element_rect(fill = 'transparent'),          panel.grid = element_blank(),          axis.ticks.length = unit(0.4,"lines"),           axis.ticks = element_line(color='black'),          axis.line = element_line(colour = "black"),          axis.title.x=element_text(colour='black', size=6,face = "bold"),          axis.text=element_text(colour='black',size=7,face = "bold"),          axis.text.y = element_blank(),          legend.position = "none",          axis.line.y = element_blank(),          axis.ticks.y = element_blank(),          plot.title = element_text(size = 10,face = "bold",colour = "black",hjust = 0.5)) +    scale_x_discrete(limits = levels(diff.mean$var)) +    coord_flip() +    xlab("") +    ylab("Difference in mean proportions (%)") +    labs(title="95% confidence intervals") for (i in 1:(nrow(diff.mean) - 1))     p2 <- p2 + annotate('rect', xmin = i+0.5, xmax = i+1.5, ymin = -Inf, ymax = Inf,                         fill = ifelse(i %% 2 == 0, 'white', 'gray95'))p2 <- p2 +    geom_errorbar(aes(ymin = conf.low, ymax = conf.high),                   position = position_dodge(0.8), width = 0.3, size = 0.40) +    geom_point(shape = 21,size = 1.5) +    scale_fill_manual(values=cbbPalette) +    geom_hline(aes(yintercept = 0), linetype = 'dashed', color = 'black')#p2    p3 <- ggplot(diff.mean,aes(var,estimate,fill = Group)) +    geom_text(aes(y = 0,x = var),label = diff.mean$p.value,              hjust = 0,fontface = "bold",inherit.aes = FALSE,size = 3) +    geom_text(aes(x = nrow(diff.mean)/2 +0.5,y = 0.85),label = "P-value (corrected)",             srt = 90,fontface = "bold",size = 2.5) +    coord_flip() +    ylim(c(0,1)) +    theme(panel.background = element_blank(),          panel.grid = element_blank(),          axis.line = element_blank(),          axis.ticks = element_blank(),          axis.text = element_blank(),          axis.title = element_blank())## 图像拼接(Combined plot)p <- p1 + p2 + p3 + plot_layout(widths = c(2,2,1))#p## 保存图像# Save plotggsave("results/Pathway_stamp_abun_filter_0.05.pdf",p,width = 8,height = 6)

使用此脚本,请引用下文:

Yong-Xin Liu, Lei Chen, Tengfei Ma, Xiaofang Li, Maosheng Zheng, Xin Zhou, Liang Chen, Xubo Qian, Jiao Xi, Hongye Lu, Huiluo Cao, Xiaoya Ma, Bian Bian, Pengfan Zhang, Jiqiu Wu, Ren-You Gan, Baolei Jia, Linyang Sun, Zhicheng Ju, Yunyun Gao, Tao Wen, Tong Chen. 2023. EasyAmplicon: An easy-to-use, open-source, reproducible, and community-based pipeline for amplicon data analysis in microbiome research. iMeta 2: e83. https://doi.org/10.1002/imt2.83

Copyright 2016-2024 Defeng Bai baidefeng@caas.cn, Chuang Ma 22720765@stu.ahau.edu.cn, Jiani Xun 15231572937@163.com, Yong-Xin Liu liuyongxin@caas.cn

宏基因组推荐
本公众号现全面开放投稿,希望文章作者讲出自己的科研故事,分享论文的精华与亮点。投稿请联系小编(微信号:yongxinliu 或 meta-genomics)

猜你喜欢

iMeta高引文章 fastp 复杂热图 ggtree 绘图imageGP 网络iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索  Endnote

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

点击阅读原文



宏基因组
宏基因组/微生物组是当今世界科研最热门的研究领域之一,为加强本领域的技术交流与传播,推动中国微生物组计划发展,中科院青年科研人员创立“宏基因组”公众号,目标为打造本领域纯干货技术及思想交流平台。
 最新文章