MicrobiomeStatPlot | 物种和基因Spearman相关网络分析

学术   2024-12-12 07:05   中国香港  

简介

在分析物种和基因相关性,或者分析多界物种与基因或者其它因子的相关性时,常常用到Spearman相关性网络来展示多个分组之间的相关性。这里从实际案例出发,尝试用Gephi和R软件实现物种和基因的Spearman相关性网络分析。

标签:#微生物组数据分析  #MicrobiomeStatPlot  #物种和基因Spearman相关网络分析  #R语言可视化 #Species and Gene Spearman Correlation Network Analysis

作者:First draft(初稿):Defeng Bai(白德凤);Proofreading(校对):Ma Chuang(马闯) and Jiani Xun(荀佳妮);Text tutorial(文字教程):Defeng Bai(白德凤)

源代码及测试数据链接:

https://github.com/YongxinLiu/MicrobiomeStatPlot/项目中目录 3.Visualization_and_interpretation/SpearmanCorrelationNetworkAnalysis

或公众号后台回复“MicrobiomeStatPlot”领取


物种和基因Spearman相关网络分析案例

这是来自于上海交通大学医学院Haoyan Chen和Jie Hong课题组2023年发表于Cell Host & Microbe上的一篇论文。论文题目为:Multi-kingdom gut microbiota analyses define bacterial-fungal interplay and microbial markers of pan-cancer immunotherapy across cohorts. https://doi.org/10.1016/j.chom.2023.10.005

图 6 |  阻断反应者和无反应者中多界标记和代谢差异丰度 KO 基因的共现网络。

细菌节点用绿色表示,真菌节点用蓝色表示,KO基因用红色表示。正相关性用橙色表示,负相关性用蓝色表示。

结果

为了探索代谢功能与微生物群之间的关系,研究人员评估了差异代谢 KO 基因与多界标记之间的相关性。注意到,真菌裂殖酵母 (Schizosaccharomyces octosporus) 是响应者多界网络的中心 (图 5B),与 2 个 KO 基因呈正相关。在无响应者中没有观察到这种情况 (图 6C),这表明裂殖酵母的富集及其代谢活动可能对响应者具有特异性。

R语言实战

源代码及测试数据链接:

https://github.com/YongxinLiu/MicrobiomeStatPlot/

或公众号后台回复“MicrobiomeStatPlot”领取

软件包安装

# 基于CRAN安装R包,检测没有则安装p_list = c("igraph","Hmisc","psych","dplyr","tidyr")for(p in p_list){if (!requireNamespace(p)){install.packages(p)}    library(p, character.only = TRUE, quietly = TRUE, warn.conflicts = FALSE)}
# 加载R包 Load the packagesuppressWarnings(suppressMessages(library(igraph)))suppressWarnings(suppressMessages(library(Hmisc)))suppressWarnings(suppressMessages(library(psych)))suppressWarnings(suppressMessages(library(dplyr)))suppressWarnings(suppressMessages(library(tidyr)))

实战

# 载入数据# Load datamic <- read.table("data/Species_data.txt", sep="\t", header=T, check.names=F,row.names = 1)mic = apply(mic, 2, function(x) x/100)gene <- read.table("data/KO_data.txt", sep="\t", header=T, check.names=F,row.names = 1)group <- read.table("data/group.txt", sep="\t", header=T, check.names=F)mic <- as.data.frame(t(mic))mic$sample <- rownames(mic)gene <- as.data.frame(t(gene))gene$sample <- rownames(gene)df <- merge(mic, gene, by = "sample")rownames(df) <- df$sampledf <- df[-1]head(df)# 计算相关性并以p>0.05作为筛选阈值进行数据处理data<-as.matrix(df)cor<- corr.test(data, method="spearman",adjust="BH")data.cor <- as.data.frame(cor$r)r.cor<-data.frame(cor$r)[91:117,1:90]p.cor<-data.frame(cor$p)[91:117,1:90]r.cor[p.cor>0.05] <- 0r.cor[abs(r.cor) < 0.3] <- 0# 构建网络连接属性及节点属性# 将数据转换为long format进行合并并添加连接属性r.cor$from = rownames(r.cor)p.cor$from = rownames(p.cor)p_value <-  p.cor %>%  gather(key = "to", value = "p", -from) %>%  data.frame() #p_value$FDR <- p.adjust(p_value$p,"BH")p_value <- p_value[, -3]cor.data<- r.cor %>%  gather(key = "to", value = "r", -from) %>%  data.frame() %>%  left_join(p_value, by=c("from","to")) %>%  #diff$p.value <- p.adjust(diff$p.value,"BH")  #filter(FDR <= 1e-5, from != to) %>%  #filter(p <= 0.001, from != to) %>%  mutate(    linecolor = ifelse(r > 0,"positive","negative"),    linesize = abs(r)  )cor.data <- cor.data[abs(cor.data$r)>0.3, ]write.csv(cor.data, "results/Species_KO_all_correlations_0.2.csv")###设置节点属性vertices <- c(as.character(cor.data$from),as.character(cor.data$to)) %>%  as_tibble() %>%  group_by(value) %>%  summarise()colnames(vertices) <- "name"vertices <- vertices %>%  left_join(group,by="name")vertices$group <- factor(vertices$group, levels = c("Species","KO" ))vertices <- vertices %>%  arrange(group)#构建graph数据结构并添加网络基础属性、保存数据###构建graph数据结构graph <- graph_from_data_frame(cor.data, vertices = vertices, directed = FALSE )E(graph)$weight <- abs(E(graph)$r)V(graph)$label <- V(graph)$name###保存数据#write_graph(graph, "Healthy_180_net13_new0911.graphml", format="graphml")write_graph(graph, "results/Species_KO_0.2.graphml", format="graphml")# 可视化方式1:基于Gephi软件进行可视化 https://gephi.org/# 可视化方式2:利用igraph进行可视化g <- graph# 准备网络图布局数据# Preparing network diagram layout data。layout1 <- layout_in_circle(g)layout5 <- layout_with_graphopt(g)## 设置绘图颜色## Setting the drawing colorcolor <- c("#879b56","#ce77ad")names(color) <- unique(V(g)$group) V(g)$point.col <- color[match(V(g)$group,names(color))] ## 边颜色按照相关性正负设置## The edge color is set according to the positive or negative correlation#E(g)$color <- ifelse(E(g)$linecolor == "positive","#ff878c",rgb(0,147,0,maxColorValue = 255))E(g)$color <- ifelse(E(g)$linecolor == "positive","#ff878c","#5ea6c2")pdf("results/network_group_graphopt.pdf",family = "Times",width = 10,height = 12)par(mar=c(5,2,1,2))plot.igraph(g, layout=layout5,     vertex.color=V(g)$point.col,     vertex.border=V(g)$point.col,     vertex.size=6,     vertex.frame.color="white",     vertex.label=g$name,     vertex.label.cex=0.8,     vertex.label.dist=0,      vertex.label.degree = pi/2,     vertex.label.col="black",     edge.arrow.size=0.5,     edge.width=abs(E(g)$r)*6,     )# 设置图例legend(  title = "group",  list(x = min(layout1[,1])-0.05,       y = min(layout1[,2])-0.05),   legend = c(unique(V(g)$group)),  fill = color,  #pch=1)legend(  title = "|r-value|",  list(x = min(layout1[,1])+0.6,       y = min(layout1[,2])-0.05),  legend = c(0.2,0.4,0.6,0.8,1.0),  col = "black",  lty=1,  lwd=c(0.2,0.4,0.6,0.8,1.0)*4,)legend(  title = "Correlation (±)",  list(x = min(layout1[,1])+1.0,       y = min(layout1[,2])-0.05),  legend = c("positive","negative"),  col = c("#ff878c",rgb(0,147,0,maxColorValue = 255)),  lty=1,  lwd=1)dev.off()#> png #>   2

使用此脚本,请引用下文:

Yong-Xin Liu, Lei Chen, Tengfei Ma, Xiaofang Li, Maosheng Zheng, Xin Zhou, Liang Chen, Xubo Qian, Jiao Xi, Hongye Lu, Huiluo Cao, Xiaoya Ma, Bian Bian, Pengfan Zhang, Jiqiu Wu, Ren-You Gan, Baolei Jia, Linyang Sun, Zhicheng Ju, Yunyun Gao, Tao Wen, Tong Chen. 2023. EasyAmplicon: An easy-to-use, open-source, reproducible, and community-based pipeline for amplicon data analysis in microbiome research. iMeta 2: e83. https://doi.org/10.1002/imt2.83

Copyright 2016-2024 Defeng Bai baidefeng@caas.cn, Chuang Ma 22720765@stu.ahau.edu.cn, Jiani Xun 15231572937@163.com, Yong-Xin Liu liuyongxin@caas.cn

宏基因组推荐
本公众号现全面开放投稿,希望文章作者讲出自己的科研故事,分享论文的精华与亮点。投稿请联系小编(微信号:yongxinliu 或 meta-genomics)

猜你喜欢

iMeta高引文章 fastp 复杂热图 ggtree 绘图imageGP 网络iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索  Endnote

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

点击阅读原文


宏基因组
宏基因组/微生物组是当今世界科研最热门的研究领域之一,为加强本领域的技术交流与传播,推动中国微生物组计划发展,中科院青年科研人员创立“宏基因组”公众号,目标为打造本领域纯干货技术及思想交流平台。
 最新文章