高温超导电子配对机理被Science杂志评为人类面临的125个重大科学问题之一。铜氧化物超导是其典型的代表,其超导电性被普遍认为来自于其特殊的Cu2+-3dx2-y2轨道,因此人们一直在寻求具有类似电子轨道属性的材料。简单来看最为接近的是Ni+1离子,但是Ni+1的化合物是极不稳定的。2019年, 斯坦福大学小组制备出具有钙钛矿结构的Nd1-xSrxNiO3薄膜,然后通过软化学方法还原成为具有无限层结构的Nd1-xSrxNiO2薄膜,获得Tc~15K的超导电性[1]。我们测量了这种无限层超导薄膜的扫描隧道谱,获得两种能隙结构,起主导作用的是d-wave型能隙(~ 4mV),借助于DFT和弱耦合近似的计算,推测主导能隙发生在dx2-y2轨道上面[2]。我们利用高温高压和软化学还原技术,合成出了空穴掺杂的Nd1-xSrxNiO2块材,但是均没有发现超导[3]。利用高分辨率透射电镜测量我们获得了112型无限层块材不超导的可能原因[4]。最近,中山大学小组在La3Ni2O7中通过高压发现了超过液氮温度的超导电性[5]。多种实验手段发现该材料在常压下具有SDW和CDW相变特性,而且关联性很强[6];加压以后,该系统发生结构相变使得对称性变得更好才出现超导。镍基超导的发现为高温超导研究提供了重要新机遇。Reference
[1] Danfeng Li et al. Nature 527, 624(2019).
[2] Qing Li et al. Commun. Mater. 1, 16 (2020).
[3] Qiangqiang Gu et al. Nat. Commun. 11, 6027 (2020).
[4] Kejun Hu et al. Nat. Commun. 15, 5104 (2024).
[5] Hualei Sun et al., Nature 621, 493 (2023).
[6] Zhe Liu et al. Nat. Commun. 15, 5104 (2024).