【期刊】中国农业大学商建英:生物炭施用于钙质潮土可以稳定表层和深层土壤有机碳

学术   2024-11-19 00:02   安徽  













图文摘要 | Graphical abstract


导读 | Introduction

由于碳周转速率缓慢,深层土壤(> 1米)具有很大的固碳潜力。深层土壤有机碳(SOC)的稳定性受土壤矿物组成和微生物过程的控制,以及新鲜碳源的类型的影响。然而,外部碳源(例如生物炭、秸秆和其他有机化合物)输入对深层土壤SOC动态和性质的影响仍然不清楚。这一知识空白已成为理解深层土壤碳固存的重要不确定因素。因此,迫切需要全面了解深层土壤固碳的能力及其管理措施对不同深度SOC含量的长期影响。研究首次详细揭示了深层钙质土壤中有机碳周转对长期存在的生物炭的反应,为生物炭的迁移下介导的生物地球化学过程提供了实地证据,这对改善农业实践和减缓气候变化具有重要意义。


Subsoil (> 1 m) has a great potential to sequester SOC due to the slow carbon turnover rate. The stability of subsoil SOC is controlled by soil mineralogy and microbial processes, and the type of fresh carbon supply. The response of the dynamics and properties of subsoil SOC to the input of external carbon sources (e.g., biochar, straw, and other organic compounds) remains largely unclear. This knowledge gap has become one of the key uncertainties in understanding carbon sequestration in subsoil. Therefore, there is a great need to fully understand the capacity of deeper soil horizons to sequester SOC and the long-term effects of management practices on SOC content at these depths. This study, for the first time, provides a detailed understanding of how SOC turnover responds to long-term biochar presence in the calcareous subsoil. It has significant implications for improving agricultural practices and mitigating climate change by offering field evidence for biogeochemical processes mediated by biochar migration.

一、有机碳储量 

| Soil organic carbon content

生物炭施用显著增加了表层土壤(0–20 cm)的有机碳(SOC)含量,从5.9 ± 0.5 g kg−1增加到7.9 ± 0.3 g kg−1 (图1a)。尽管生物炭施用经过10年后并未改变深层土壤的SOC含量,但与对照土壤相比,施用生物炭增加了162%深层土壤的溶解性有机碳(DOC)含量,从0.23 g kg−1 增加到0.60 g kg−1(图1b)。由于灌溉、降雨等因素,生物炭的可溶性部分和胶体部分可以通过土壤孔隙和裂缝移动到更深的土层中。与对照土壤相比,生物炭处理显著增加了表层土壤微生物量碳(MBC)含量,从156.8 ± 4.2 mg kg−1(对照)增加到 239.1 ± 4.0 mg kg−1(生物炭处理),然而该处理深层土壤的MBC含量略有下降(图1c)。


Biochar amendment significantly increased topsoil SOC content (0–20 cm) from 5.9 ± 0. 5 g kg−1 to 7.9 ± 0.3 g kg−1 (Fig. 1a). Although biochar amendment did not change SOC contents in the subsoil, subsoil DOC content increased by 162 % (from 0.23 g kg−1 to 0.60 g kg−1) in soil with versus without biochar application (Fig. 1b). The dissolved and colloidal fraction of biochar can be transported to deeper soils along soil pores and fractures due to irrigation, rainfall, and other factors.Although the biochar amendment increased DOC contents in both topsoil and subsoil after ten-year biochar addition into topsoil (Fig. 1b), MBC increased only in the topsoil with versus without biochar amendment (156.8 ± 4.2 mg kg−1 vs. 239.1 ± 4.0 mg kg−1) (Fig. 1c). The MBC content in the biochar-treated subsoil exhibited a slight decrease compared to the control (Fig. 1c).

图1 生物炭施用对表层和深层土壤有机碳含量的影响

Fig. 1  Effects of biochar application on (a) soil organic carbon (SOC, g kg−1), (b) dissolved organic carbon (DOC, g kg−1), and (c) microbial biomass carbon (MBC, g kg−1) for control and biochar-amended soil.

二、水可提取态可溶性有机碳分析

| Water-extracted dissolved organic matter analysis

液相色谱有机碳检测(LC-OCD)结果显示对照和生物炭处理的表层(0-20 cm)和深层土壤(140-160 cm)中水提取的溶解有机物(DOM)成分及其不同分子量的情况(图2)。相对于对照土壤,单次添加生物炭十年后的表层土壤增加了腐殖质物质多酚和多酚酸的浓度(图2a和2b)。对于深层土壤,与对照土壤相比,生物炭的添加增加了总水溶性有机分子和亲水性有机碳的含量,而疏水性成分的含量则相反(图2c和2d),这主要是在降雨和灌溉条件下,生物炭施用促进了土壤亲水性有机碳和生物炭胶体颗粒向土壤深层的迁移


The water-extracted dissolved organic matter (DOM) components with different molecular weights in the control and biochar-amended topsoil (0-20 cm) and subsoil (140-160 cm) are shown in Liquid chromatography organic carbon detection (LC-OCD) analysis (Fig. 2). There was an increase in large functionalized macromolecules (referred to as humic-like substances, HS) and a high concentration of building blocks (polyphenols and polyphenolic acids) for the biochar-amended topsoil. The total water-dissolved organic molecules and hydrophilic organic carbon of biochar-amended subsoil were higher than those of the control soil, while the hydrophobic components were not (Fig. 2c and 2d). The large molecular weight biopolymers, building blocks + HS, and the low molecule weight neutrals in biochar-amended subsoil were higher than the control soils due to most of the hydrophilic carbon and porous colloidal biochar was transported to the subsoil with rainfall and irrigation over ten years.


图2 对照和生物炭处理表层和深层土壤水可溶性有机碳液相色谱有机碳检测图

Fig. 2 Water-extracted dissolved organic content (DOC) of control and biochar-amended soils for topsoil (0–20 cm) and subsoil (140–160 cm), analyzed with LC-OCD.

三、土壤细菌的丰富度和多样性

| Soil bacteria richness and diversity

图3a显示,相比于对照土壤,生物炭施用使表层土壤Actinobacteria相对丰度由27.4%降低至19.6%,而Proteobacteria相对丰度由27.1%增加至32.1%,Gemmatimonadetes相对丰度也从4.4%增加至5.1%。生物炭施用对深层土壤的细菌群落组成的影响明显大于对表层土壤的影响。例如,生物炭施用降低了Acidobacteria, Actinobacteria, Gemmatimonadetes, Nitrospirae, LatescibacteriaPlanctomycetes的相对丰度,降幅在21.2%至75.4%之间,而Proteobacteria的相对丰度则从27.3% (对照)增加到40.0%(施用生物炭的土壤)(图3a)。此外,在门级物种丰度聚类热图表明生物炭的长期存在改变了对照组与施用生物炭土样之间的群落组成相似性(图3b)。生物炭施用降低了土壤的微生物多样性和丰富度,表现为PD_whole_tree、Chao1、Observed_species和Shannon指数均显示出较小的数值。化能异养细菌相对丰度的降低可能有助于SOC的稳定,因为化能异养细菌可分解土壤有机物和芳香化合物。


In topsoil, biochar amendment decreased the relative abundance of Actinobacteria (from 27.4 % to 19.6 %) and increased the Proteobacteria (from 27.1 % to 32.1 %) and Gemmatimonadetes (from 4.4 % to 5.1 %) compared to the control (Fig. 3a). Compared to the control soil, biochar amendment substantially affected the bacterial community compositions in subsoil than in topsoil. For example, biochar amendment decreased the relative abundances of Acidobacteria, Actinobacteria, Gemmatimonadetes, Nitrospirae, Latescibacteria, and Planctomycetes, the decrements were between 21.2 % and 75.4 %, but increased the relative abundance of Proteobacteria from 27.3 % (control) to 40.0 % (biochar-amended soil) (Fig. 3a). Phylum-level species abundance clustering heat maps strongly illustrated that the long-term presence of biochar changed the community composition similarity between the control and biochar-treated soil samples at both topsoil and subsoil (Fig.3b). In addition, biochar amendment decreased microbial diversity and richness as the smaller values of PD_whole_tree, Chao1, Observed_species, and Shannon indices were observed in soil with or without biochar amendment.


图3 生物炭添加对表层和深层土壤细菌的影响

(a) 细菌群落相对丰度,(b) 门水平上物种聚类热图

Fig. 3 Effect of biochar amendment on the soil bacteria in topsoil and subsoil

(a) Mean relative abundance of bacteria (n=3) and (b) species abundance clustering heatmap in the control and biochar-amended soil samples (phylum level) for the representative soil depth.

四、稳定表层和深层土壤有机碳

| Stabilized SOC in both topsoil and subsoil

生物炭施用改变了表层和深层土壤中不同密度分级的土壤有机碳的分配,显著增加了矿物结合土壤有机物(MAOM)的含量,从而有助于碳的固存(图4)。生物炭施用使表层土壤的SOC含量增加了33.3%,深层土壤的SOC含量增加了5.5%(图1a),这种增加主要是由于MAOM的形成。研究结果表明,施用生物炭后,表层土壤中的MAOM含量从1.21 ± 0.03 g kg−1增加到5.83 ± 0.05 g kg−1,深层土壤的MAOM含量从1.43 ± 0.17 g kg−1增加到2.08 ± 0.47 g kg−1。表层土壤SOC的增加既由于生物炭本身的高有机碳含量,也受到有机矿物相互作用所产生的物理和化学保护机制的影响,这些机制促进了SOC的稳定和积累。十年后,生物炭施用导致SOC的不同组成成分从颗粒状有机物(o-POM)部分重新分配并转移至MAOM部分,从而最大限度地提高了碳固存。结果表明,尽管施用生物炭后十年深层土壤的SOC总量并未增加,但生物炭施用增加了SOC的稳定性


Biochar amendment altered the SOC assigned within different density fractions in both topsoil and subsoil, significantly increasing the mineral-associated soil organic matter (MAOM) content, thus contributing to the carbon sequestration (Fig.4). Biochar amendment increased SOC contents by 33.3 % in topsoil and 5.5 % in subsoil (Fig. 1a). Such increases are mainly because of the MAOM formation. This is confirmed by the finding that the MAOM content in topsoil increased from 1.21 ± 0.03 g kg−1 to 5.83 ± 0.05 g kg−1 and from 1.43 ± 0.17 g kg−1 to 2.08 ± 0.47 g kg−1 in subsoil after biochar addition. The increase in SOC in the topsoil was due to both the high organic carbon content of biochar itself and the physical and chemical protection mechanisms via organo-mineral interactions causing stabilizing and accumulating SOC after biochar addition. A decade after biochar addition, the different components of the SOC are reassigned and transferred from the o-POM fraction to the MAOM fraction, which can maximize carbon sequestration.

图4 生物炭添加对表层和深层土壤有机碳分配的影响

Fig. 4 Distribution of organic carbon in occluded particulate organic matter (o-POM) and mineral-associated soil organic matter (MAOM) for control and biochar-amended soils.

五、潜在机理

| Potential mechanisms

在施用生物炭十年后,影响了深层土壤有机碳的含量、成分和稳定性(图5)。随着生物炭的迁移,深层土壤中的DOC含量以及腐殖质和芳香物质的组成均有所增加。生物炭的添加通过促进有机-矿物之间的相互作用,从而增强了深层土壤有机碳的稳定性。长期施用生物炭导致深层土壤碳固存与生物炭的强移动性相关,这使得生物炭能够从表层土壤迁移到深层土壤。生物炭施用十年后,生物炭颗粒在田间老化和破碎,从而提高生物炭胶体的移动性。生物炭与表层土壤相互作用,导致更多的生物炭以DOC的形式向下移动,从而增加了整个土壤剖面中的DOC。此外,在碱性环境中,胶态生物炭的移动性也更强,这进一步支持了我们的假设:生物炭可以在钙质土壤中迁移到深层土壤,并改变有机碳的稳定性,从而在深层土壤碳固存中发挥重要作用。


Here, we propose that after ten years of application of biochar to surface soil, the biochar affected the content, component, and stabilization of subsoil organic carbon (Fig. 5). With the biochar migration, the DOC content and the composition of humus and aromatics in the subsoil were increased. Significantly, the addition of biochar facilitated organo-mineral interactions, thereby enhancing the stabilization of subsoil organic carbon. The sequestration of soil carbon in subsoil due to long-term biochar application is associated with the strong mobility of colloidal and dissolved biochar, which allows biochar to translocate from topsoil to subsoil. A decade after biochar application in soil, fresh biochar can be aged and fragmented in the field, improving the mobility of biochar colloids. The biochar interacted with the topsoil and caused more biochar movement downward in the form of DOC, which led to the increase of DOC in the whole soil profile. In addition, colloidal biochar also has stronger mobility in alkaline environments, which further supports our hypothesis that biochar can migrate to subsoil layers in calcareous soil and change the soil carbon stability, and as a result, plays an important role in subsoil carbon sequestration.


图5 生物炭影响表层和深层土壤稳定性的潜在机理

(a) 细菌群落相对丰度,(b) 门水平上物种聚类热图

Fig. 5 Proposed mechanism of the biochar effect on the SOC composition, bioactivities, and stabilization for topsoil and subsoil a decade after biochar incorporated into calcareous topsoil.

总结 | Conclusions

生物炭施用于钙质土壤不仅能稳定表层土壤有机碳,还能增加深层土壤有机碳的稳定性。对深层土壤的影响是由于溶解态和颗粒态的(老化)生物炭从表层土壤向深层土壤的迁移所导致的。这些发现为生物炭应用对钙质土壤碳固存长期影响提供了实验和概念证据。生物炭施用对碳固存的影响及其在缓解全球气候变化陆地生态系统中的作用可能被低估,特别是忽视了其长期作用对深层土壤有机碳稳定性的情况下。我们的研究强调了需要进行更多的田间实验,以更好地理解长期施用生物炭对深层土壤碳固存的影响。生物炭在田间的施用是全球碳固存和气候变化缓解的重要策略,未来需要更多关于生物炭施用对土壤有机碳储量和结构的长期影响的研究,将有助于深入理解生物炭迁移驱动的土壤有机碳周转过程。


Our study shows that biochar amendment to a calcareous soil leads to carbon stabilization, not only in the topsoil, but also in the subsoil. Biochar mobility in alkaline soils, especially aged biochar, also affects the composition of dissolved organic carbon (DOC), increasing the DOC content in the subsoil. These findings provide experimental and conceptual evidence for the long-term impact of biochar application on carbon sequestration in calcareous soil. Our results suggest that the effect of biochar application on carbon sequestration and its role in mitigating global climate change in terrestrial ecosystems may be underestimated, especially if the stability of subsoil SOC is overlooked. Our study emphasizes the need for more field experiments to better understand the impact of long-term biochar application on subsoil carbon sequestration. Biochar application in the field is a key strategy for global carbon sequestration and climate change mitigation. Future research on the long-term effects of biochar application on SOM stocks and structure will contribute to a deep understanding of the SOC turnover process driven by biochar migration.

扫二维码 | 查看原文

https://www.sciencedirect.com/science/article

/pii/S0048969723066731?via%3Dihub

本文内容来自ELSEVIER旗舰期刊Sci Total Environ第907卷发表的论文:

Wang, Y., Yin, Y.J., Joseph, S., Markus, F., Wang, X., Tahery, S., Li, B.G. and Shang, J.Y., 2024. Stabilization of organic carbon in top- and subsoil by biochar application into calcareous farmland. Sci Total Environ 907, 168046.


DOI: https://doi.org/10.1016/j.scitotenv.2023.168046

第一作者:王洋 副教授

中国农业大学土地科学与技术学院


在中国农业大学获得博士学位,现为中国农业大学土地科学与技术学院学院青年研究员,博导。主要研究方向为生物炭的环境行为、耕地质量提升和土壤固碳增汇。以第一作者或共同作者在Science of the Total Environment、Environmental Science & Technology、Environmental Pollution、Biochar等国际期刊发表论文15篇。

通讯作者:商建英 教授

中国农业大学土地科学与技术学院


中国农业大学土地科学与技术学院教授、博导,中国农业大学“领军人才”;中国土壤学会副秘书长、理事,中国土壤学会土壤工程专业委员会副主任以及土壤物理和土壤化学专业委员会委员;目前担任Journal of Hydrology和Vadose Zone Journal副编辑,《Biochar》、《Carbon Research》、《土壤学报》、《农业环境科学学报》等期刊编委。长期从事土壤物理和土壤环境相关研究,聚焦于生物炭土壤固碳、土壤胶体、胶体迁移等。主持多项国家重点研发计划项目以及国家自然科学基金项目等。在国内外主流杂志发表论文130余篇,其中SCI论文100余篇,单篇最高他引300余次,总引用3980余次,获国家发明专利授权2项。

近2年在Sci Total Environ发表的其他论文:
1. Li et al., 2024. Influence of natural organic matter on the aggregation dynamics of biochar colloids derived from various feedstocks. Sci Total Environ 946 174097.
2. Zhao et al., 2024. Effect of coupled physical and chemical heterogeneity on the transport of pristine and aged pyrogenic carbon colloids in unsaturated porous media. Sci Total Environ 918, 1170542.
3. Li et al., 2023. Carbon content determines the aggregation of biochar colloids from various feedstocks. Sci Total Environ 880, 163313.
4. Zhao et al., 2023. Transport of biochar colloids under unsaturated flow condition: Roles of chemical aging and cation type. Sci Total Environ 859, 160415.



声明:此文是出于传递更多信息之目的。部分图片、资料来源于网络,版权归原作者所有,如有侵权请联系后台删除。

往期推荐:





【期刊】生物炭施用于钙质潮土可以稳定表层和深层土壤有机碳


【期刊】神农架大九湖泥炭孔隙水中微生物的碳代谢特征


【期刊】硫化物/碳材料中缺陷型异质结诱发极化耦合实现强电磁波吸收


【期刊】简易合成Pt团簇修饰TiO2纳米颗粒用于高效光催化降解抗生素


【期刊】利用熵工程促进等效偶极极化用于超薄电磁波吸收


蔻享学术
传播科学、共享科学、服务科学
 最新文章