论文信息:
论文链接:
研究背景
研究内容
为了解决碳纳米管薄膜高微波反射率的问题,并实现雷达和动态红外隐身之间的兼容性,本研究提出了一种包含碳纳米管-电容 (CNTs-EC) 器件的超材料设计。结果表明,精心设计的 CNTs-EC 器件在红外和微波波段均表现出有效的兼容隐身性能。该器件在 8–14 μm 波段内展示了可逆的发射率可调性 (0.323–0.768),以及 9.67–16.04 GHz 的有效吸收范围,这为多波段隐身应用提供了广阔的潜力。
为了实现红外可调谐性和雷达吸收性能之间的兼容性,本工作创新性地提出了一种多层结构,如图1所示。具体而言,这种新型结构仅使用一层CNT薄膜作为超材料和可变发射率EC-IR器件的一部分。超结构由顶部的 ITO 图案结构、硫化锌 (ZnS) 介电层和上部的碳膜组成,可以衰减入射微波(图 1(c))。周期性单元参数如下:晶胞长度 a,内边长 b,外边长 c 和高度 d。EC-IR 发射率器件由上层 CNT 薄膜、Celgard 薄膜和下层 CNT 薄膜构成,其中红外特性通过其上方的超材料辐射到外界,从而实现可调红外隐身。图 1(f) 展示了器件的完整加工过程。首先,通过磁控溅射在 ZnS 上镀制 ITO 薄膜,然后使用紫外激光刻蚀,留下方形环形部分。需要调整溅射速率和刻蚀功率以制备满足要求的图案,从而完成上层制备。
图 2(b) 中所示的碳纳米管交联有利于形成三维导电网络,从而导致高电导率。CNT 薄膜的拉曼光谱如图 2(c) 所示。缺陷和石墨的相对强度比 (peaks(ID/IG = 0.13) 表明 CNT 薄膜的石墨化程度高。CNT 薄膜的 XRD 图谱在图 2(d) 中显示出在 25.9◦ 处有一个尖锐峰,这也表明初始高纯度 CNT。CNT 薄膜的方块电阻通常为 1 Ω/sq,这反映了几乎所有入射电磁波在微波频段内镜面反射,如图 S1 所示。通过在超材料底部设计 CNT 薄膜,并在其上构建超材料。因此,上层 CNT 薄膜充当微波反射层。考虑到 CNT 薄膜的导电性和电路的排列,EC 器件被放置在超材料下方。
图 3(a) 显示了模拟的反射率和吸收率。黑色实线代表反射率,红色虚线代表吸收率。在 9.6–15.5 GHz 频段内,吸收率大于 90%,有效吸收带宽为 5.9 GHz,并在 10.9 GHz 和 14.3 GHz 处有两个吸收峰。当对EC-IR器件施加电压时,表面CNT薄膜的方块电阻会发生变化。为了验证该结构与ECIR性能的兼容性,图3(b)模拟了EC器件的表面方块电阻。可以看出,方块电阻介于 0.1 Ω 和 1 Ω 之间,并且该结构在选定的频段内仍然保持着超过 4 GHz 的有效吸收带宽。可以发现,方块电阻的变化对吸收性能的影响可以忽略不计,并且该结构与 EC-IR 性能兼容。为了验证结构在广角入射下的兼容性,结构的入射角 θ 从 0 到 50◦ 进行模拟,每 10◦ 进行一次计算,如图 3(c–d) 所示。可以看出,该结构在 0~40◦ 范围内对横电 (TE) 波的入射角 θ 实现了良好的吸收。在 10.9 GHz 和 14.3 GHz 两个吸收峰处,对结构的电场和表面电流进行了模拟。分别截取了电场和表面电流相位为 0 的模拟图像,如图 3 所示。从图 3 (e) 和 (g) 可以看出,此时电场在内外方形环的上、下边缘处最为强烈。从图 3 (f) 可以看出,表面电流紧密地局限在顶层附近,并且在图案层和底层之间产生了反向平行电流,表明存在磁共振,导致该频率处强吸收。从图 3 (h) 可以发现,表面电流紧密地局限在顶层附近,并且在图案层和底层之间没有反向平行电流,表明磁共振没有被激发。因此,可以得出结论,该频率点的吸收是由入射电磁波激发的电共振引起的。
图 5(a) 显示了具有十字形图案的超材料。超材料的优化尺寸如下:a2 = 0.5 mm,b2 = 5 mm,c2 = 7.5 mm,厚度为 2 mm。图 5(b) 显示该结构的表面填充率为 8.444%,有效吸收带宽为 5.4 GHz(9.9–15.3 GHz)。考虑到有效吸收带宽和表面填充率,该方案被放弃。图 5 (c–f) 所示的 11.2 和 14 GHz 处的两个吸收峰也进行了电场和表面电流模拟。
处理后的样品尺寸为 180 mm × 180 mm,厚度为 2.013 mm。测量的微波结果如图 6 所示。制备的超材料波吸收体样品采用拱形法进行测试,如图 6(a) 所示。图 6(b) 显示了该超结构在不同红外发射率状态下,在垂直入射条件下的雷达反射损耗测量结果。可以看出,所提出的超结构可以在不同的红外发射率状态下实现良好的性能。在无外加电压的垂直入射条件下,有效吸收带宽为 9.67 至 16.04 GHz,与仿真结果一致。15.8 GHz 处的差异可能是由于样品制备误差、电极对准问题和 ITO 方块电阻变化造成的。雷达频段的测试结果表明,超材料可以实现EC器件在不同状态下方块电阻的变化。此外,在初始发射率状态(0 V)下,对样品在TE和TM偏振模式下不同入射角的反射损耗进行了测试,结果如图6(c和d)所示。可以观察到,样品在TE偏振模式下入射角小于50°,在TM偏振模式下入射角小于30°时,可以保持良好的吸收性能,这与模拟计算的预期一致。
厚度为 42 μm 的 EC-IR 器件放置在 70 ◦C 加热平台上,如图 7 所示,发射率随着电压的增加而降低。图 7 (c) 显示了低发射率和高发射率状态的红外图像。从实验结果可以看出,与原始EC-IR发射率器件相比,制备的超材料样品对低发射率有较大影响,对高发射率的影响较小。从以上讨论可以看出,调制范围变窄的主要原因是ZnS介电层对来自下方EC层的红外光的反射和吸收。此外,ITO 层保持固定不变的低发射率状态,这也降低了调制范围。
结论与展望