目前固态材料在受刺激时能够切换发光性质仍然是一个挑战,特别是对于有机材料而言。晶体中的水分子极大地影响有机晶体的吸收光谱,但是否可以系统地通过水分子调控有机发光材料的发射光谱尚不清楚。
近日,中国科学院上海药物研究所黄永焯研究员和天津大学龚俊波教授等人在Science China Materials发表研究论文,成功地制备了姜黄素一水合物(Ⅹ型),它是一种结晶诱导发光(CIE)的通道型水合物,在608 nm处发出橙色荧光,与传统的聚集诱导荧光猝灭(ACQ)形式有所不同。
本文要点
1) 经过热处理后,姜黄素水合物释放出水分子,形成了新的无水合物(IV型),其发出黄绿色荧光,且最佳发射波长为575 nm。2) 该方法可用于追踪皮下或肌肉注射后姜黄素晶体的吸收。3) 水合物介导的单晶到单晶转变(SCSC)及其相关的发光转变是可逆的,并且对温度敏感,可为合成和设计基于聚集诱导发射(AIE)的智能发光装置提供一种环保的途径,也可用于检测空气湿度或示踪药物吸收。Figure 1. (a) The fluorescence spectra (excitation wavelength: 420 nm) and (b) fluorescence images (photographs were taken under 365 nm UV light illumination) of CUR in water/methanol mixtures with different water fractions (fw).Figure 2. (a) Normalized fluorescent emission spectra and (b) Reversible change in the emission color of CUR monohydrate by alternative varying the temperature. Excitation wavelength: 420 nm. (c) The XRD patterns of CUR monohydrate by alternative varying the temperature. (d) The cycle of TGA curves of CUR monohydrate. Humidity: 40%–50%.Figure 3. Fluorescence microscope photographs of monohydrate during the temperature cycling process. (a) Crystalline powder. (b) A single crystal with poor integrity; (c) A perfect single crystal. Excitation wavelength: 420 nm. Humidity: 40%–50%. Scale bars: 100 μm.Figure 4. Tracking images of curcumin crystals with (a) subcutaneous injection and (b) intramuscular injection. The white dotted line indicates the injection site of CUR.Huan Shen, Peng Shi, Ergang Liu, Yuefei Fang, Shijie Xu, Junbo Gong, Yongzhuo Huang. Aggregation-caused quenching to crystallization-induced emission transformation: hydration-induced luminescence in crystal curcumin with tunable thermochromism for in vivo tracking. Sci. China Mater. (2024).https://doi.org/10.1007/s40843-024-3049-1
点击左下角“阅读原文”,阅读以上文章PDF原文