郑州大学陈卫华&盖军民等:合金反应诱导的半共格界面调控钠金属成核和生长实现少量负极钠金属电池的长期循环

文摘   2024-09-25 10:36   北京  

钠金属电池因其能量密度高、资源丰富等优势被认为是一种极具前景的电化学储能技术,然而在高面容量下实现电池持续运行是阻碍该系统应用的关键科学问题

近日,郑州大学陈卫华教授和盖军民研究员等人Science China Materials发表研究论文,通过工业电镀策略在商业化的铝箔集流体表面精心设计了二维锡/钠锡合金涂层

本文要点

1) 与目前广泛报道的SnNa原位形成Na15Sn4合金不同,设计的Na9Sn4合金界面与钠具有更低的晶格失配率(20.84%,进而形成半共格界面,从而减缓钠金属沉积过程中的晶格应力,并诱导钠在高面容量下致密沉积。
2) Sn与阴离子的吸附作用使得更多的PF6优先参与界面溶剂化结构,从而促进形成薄(10 nm的富含NaF等无机物的固态电解质界面,增强钠离子的传输,进一步有助于钠金属的均匀沉积,提高钠金属沉积/剥离循环的可逆性和稳定性。
3) 衬底在5 mA h cm−2的高面容量下,表现出高达99.7%的平均库仑效率。60 mA g−1下,全电池展现出600周的循环稳定性,每圈循环衰减率低至0.0018%
Figure 1. Structural characterizations of the Sn-Al substrate. Schematic for (a) the device for Sn-Al substrate preparation and (b) the process of forming an inorganic-rich SEI and a semi-coherent interface. (c) SEM image of Sn-Al with an optical photo (inset). (d) Side-view SEM image of Sn-Al with the corresponding elemental mapping (electroplating for 5 min at 20 mA cm−2). (e) TEM image and FFT image of Sn-Al. (f) XRD patterns of Sn-Al and bare Al foils. Contact angles of (g) the NaPF6 DGM electrolyte (1 mol L−1) and (h) Na on the Sn-Al and bare Al foils.
Figure 2. Electrochemical performance of the Sn-Al substrate. (a) CV performance of Na||Sn-Al and Na||Al asymmetrical batteries. CE of asymmetric batteries using bare Al foils and Sn-Al substrate at (b) 3 mA cm−2 with 3 mA h cm−2 and (c) 5 mA cm−2 with 5 mA h cm−2. (d) Long-term cycling performance of Na/Sn-Al||Na/Sn-Al asymmetric batteries at different current densities. (e) Comparison of the current density, cumulative capacity and ACE of the collectors.
Figure 3. Characterizations and analyses of the sodium metal deposition morphology. (a, b) SEM images and sectional distribution of Na electrodeposited on Sn-Al and bare Al foils. (c) In situ optical microscopy images of Na plating on Sn-Al and bare Al foils. In situ XRD results of the asymmetric batteries with (d) Sn-Al and (e) bare Al foils during the first two cycles at 1 mA cm−2. (f) Comparison of the cumulative reversible capacity, cumulative irreversible capacity, sodium metal capacity consumed by the SEI and “dead” Na on the Sn-Al and bare Al foils after 20 cycles at 1 mA cm−2. (g) SEI on Sn-Al and bare Al foils after 5 cycles at 1 mA cm−2 and (h, i) the corresponding XPS depth profiling characterizations of the F 1s spectra. (j) Adsorption energy and lattice mismatch of Na among different metal atoms. (k) Schematic of three kinds of interfaces formed between Na atoms and diverse metal atom substrates by lattice matching.
Figure 4. Electrochemical performance of full batteries with Sn-Al substrate. (a) Long-term cycling performance of Sn-Al/Na||NFMPP (N/P = 2) at 60 mA g−1. (b) Corresponding specific capacity-voltage curves of Sn-Al/Na||NFMPP (N/P = 2) at different cycles. (c) Comparison of cyclic reversibility in recent reports (the larger the sphere, the smaller the N/P). (d) Long-term cycling performance of Sn-Al||NVP anode-free battery. (e) Corresponding energy efficiency performance of anode-free sodium-metal batteries. (f) Safety test of anode-free sodium-metal pouch battery to light up LED bulbs under normal, folded and cut states.

文章信息




Pei Ma, Yaoyang Zhang, Wenbin Li, Jun Luo, Longfei Wen, Guochuan Tang, Jingjing Gai, Qingbao Wang, Lingfei Zhao, Junmin Ge, Weihua ChenTailoring alloy-reaction-induced semi-coherent interface to guide sodium nucleation and growth for long-term anode-less sodium-metal batteries. Sci. China Mater. (2024).

https://doi.org/10.1007/s40843-024-3084-4


击左下角“阅读原文”,阅读以上文章PDF原文

【扩展阅读】

青岛科技大学刘治明&李慧芳&王朋等:氮硫共掺杂纳米片组装而成的多孔碳微球作为锂/钠离子电池负极材料

温州大学侴术雷&李林等:全气候长寿命钠离子电池用多孔Na4Fe3(PO4)2(P2O7)/C复合材料

清华冯旭宁&北理工吴宇等:揭示碳酸乙烯酯对LiNi0.9Co0.05Mn0.05O2||石墨软包电池的电化学/热安全特性的影响

清华大学深研院康飞宇&贺艳兵&吕伟等:铌酸锂调控固态电解质电场结构促进锂离子高效传输

西安交通大学丁书江&曾荣等:用于室温全固态锂金属电池的精准丁二腈官能团化聚氧化乙烯固态电解质

华中科技大学黄云辉&许恒辉&李顶根等:坚韧、弹性的氟化固体电解质界面稳定碳酸酯电解质中的锂金属

华南农业大学梁业如等:基于全同源策略构建低界面阻抗的柔性固态锂离子电池

天大封伟&北化李瑀等:丁二腈增塑氟化聚碳酸酯基固态电解质用于4.5 V高压锂金属电池

中南大学潘安强&常智等:钴-碳框架封装作为固态电解质层实现稳定的氧化硅负极用于锂存储

哈工大(深圳)王文辉&浙江科技阮挺婷等:具有增强界面稳定性的阻燃型电解液用于实际锂金属电池

澳大利亚斯威本科技大学孙成华&电子科技大学李白海等综述:电池衰减诊断及状态评估研究进展

华东理工江浩、程起林等:三元单晶颗粒用于提升锂离子电池性能

点击阅读全文,了解更多



中国科学材料
以科学为导向,以作者为中心,SCIENCE CHINA Materials快速发表材料科学最新研究成果,全面报道热点领域研究进展和前沿资讯。
 最新文章