引言
为方便广大读者查阅文献,Materials Genome Engineering Advances(简称:MGE Advances)期刊对2024年发表文章进行了汇总整理。欢迎各位专家学者关注、阅读和引用!
2024文章集锦
Cover Image
Editorial
1. Editorial: Shaping the future of materials science through machine learning
Dezhen Xue, Turab Lookman
https://onlinelibrary.wiley.com/doi/10.1002/mgea.80
引用:Xue D, Lookman T. Editorial: Shaping the future of materials science through machine learning. MGE Advances. 2024; 2(4): e80.
https://doi.org/10.1002/mgea.80
扫码阅读原文
Review
2. The MatHub-3d first-principles repository and the applications on thermoelectrics
Lu Liu, Mingjia Yao, Yuxiang Wang, Yeqing Jin, Jialin Ji, Huifang Luo, Yan Cao, Yifei Xiong, Ye Sheng, Xin Li, Di Qiu, Lili Xi, Jinyang Xi, Wenqing Zhang*, Lidong Chen, Jiong Yang*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.21
引用:Liu L, Yao M, Wang Y, et al. The MatHub-3d first-principles repository and the applications on thermoelectrics. MGE Advances. 2024; 2(1): e21.
https://doi.org/10.1002/mgea.21
扫码阅读原文
3. Navigating energy landscapes for materials discovery: Integrating modeling, simulation, and machine learning
Sajid Mannan, Vaibhav Bihani, N. M. Anoop Krishnan*, John C. Mauro*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.25
引用:Mannan S, Bihani V, Krishnan NMA, Mauro JC. Navigating energy landscapes for materials discovery: integrating modeling, simulation, and machine learning. MGE Advances. 2024; 2(1): e25.
https://doi.org/10.1002/mgea.25
扫码阅读原文
4. Materials genome engineering accelerates the research and development of organic and perovskite photovoltaics
Ying Shang, Ziyu Xiong, Kang An, Jens A. Hauch, Christoph J. Brabec, Ning Li*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.28
引用:Shang Y, Xiong Z, An K, Hauch JA, Brabec CJ, Li N. Materials genome engineering accelerates the research and development of organic and perovskite photovoltaics. MGE Advances. 2024; 2(1): e28.
https://doi.org/10.1002/mgea.28
扫码阅读原文
5. Applications of generative adversarial networks in materials science
Yuan Jiang, Jinshan Li*, Xiang Yang, Ruihao Yuan*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.30
引用:Jiang Y, Li J, Yang X, Yuan R. Applications of generative adversarial networks in materials science. MGE Advances. 2024; 2(1): e30.
https://doi.org/10.1002/mgea.30
扫码阅读原文
6. A Review on the Applications of Graph Neural Networks in Materials Science at the Atomic-scale
Xingyue Shi, Linming Zhou, Yuhui Huang, Yongjun Wu*, Zijian Hong*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.50
引用:Shi X, Zhou L, Huang Y, Wu Y, Hong Z. A review on the applications of graph neural networks in materials science at the atomic scale. MGE Advances. 2024; 2(2): e50. https://doi.org/10.1002/mgea.50
扫码阅读原文
7. Thermodynamic variational principle, its connections to the phenomenological laws and its applications to the derivation of microstructural models
Qiang Du*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.51
引用:Du Q. Thermodynamicvariational principle, its connections to the phenomenological laws and its applications to the derivation of microstructural models. MGE Advances.2024; 2(2): e51. https://doi.org/10.1002/mgea.51
扫码阅读原文
8. High-throughput preparation for alloy composition design in additive manufacturing: A comprehensive review
Min Liu, Chenxu Lei, Yongxiang Wang, Baicheng Zhang*, Xuanhui Qu
https://onlinelibrary.wiley.com/doi/10.1002/mgea.55
引用:Liu M, Lei C, Wang Y, Zhang B, Qu X. High-throughput preparation for alloy composition design in additive manufacturing: a comprehensive review. MGE Advances. 2024; 2(2): e55. https://doi.org/10.1002/mgea.55
扫描阅读原文
9. Artificial intelligence enabled smart design and manufacturing of advanced materials: The endless Frontier in AI+ era
William Yi Wang, Suyang Zhang, Gaonan Li, Jiaqi Lu, Yong Ren, Xinchao Wang, Xingyu Gao, Yanjing Su, Haifeng Song*, Jinshan Li*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.56
引用:Wang WY, Zhang S, Li G,et al. Artificial intelligence enabled smart design and manufacturing of advanced materials: the endless frontier in AIþ era. MGE Advances. 2024; 2(2): e56. https://doi.org/10.1002/mgea.56
扫描阅读原文
10. Harnessing quantum power: Revolutionizing materials design through advanced quantum computation
Zikang Guo, Rui Li, Xianfeng He, Jiang Guo, Shenghong Ju
https://onlinelibrary.wiley.com/doi/10.1002/mgea.73
引用:Guo Z, Li R, He X, Guo J, Ju S. Harnessing quantum power: revolutionizing materials design through advanced quantum computation. MGE Advances. 2024; 2(4): e73. https://doi.org/10.1002/mgea.73
扫描阅读原文
11. A review on inverse analysis models in steel material design
Yoshitaka Adachi, Ta-Te Chen, Fei Sun, Daichi Maruyama, Kengo Sawai, Yoshihito Fukatsu, Zhi-Lei Wang
https://onlinelibrary.wiley.com/doi/10.1002/mgea.71
引用:Adachi Y, Chen T-T, Sun F, et al. A review on inverse analysis models in steel material design. MGE Advances. 2024; 2(4): e71.
https://doi.org/10.1002/mgea.71
扫描阅读原文
Research Article
12. First-principle screening of corrosion resistant solutes (Al, Zn, Y, Ce, and Mn) in Mg alloys for Integrated Computational Materials Engineering guided stainless Mg design
Zhihao Yang, Junsheng Wang*, Chi Zhang, Shuo Wang, Chengpeng Xue, Guangyuan Tian, Hui Su, Chengming Yan, Zhifei Yan, Yingchun Tian
https://onlinelibrary.wiley.com/doi/10.1002/mgea.22
引用:Yang Z, Wang J, Zhang C, et al. First-principle screening of corrosion resistant solutes (Al, Zn, Y, Ce, and Mn) in Mg alloys for Integrated Computational Materials Engineering guided stainless Mg design. MGE Advances. 2024; 2(1): e22. https://doi.org/10.1002/mgea.22
扫描阅读原文
13. Effect of signal-to-noise ratio on the automatic clustering of X-ray diffraction patterns from combinatorial libraries
Yuanxun Zhou*, Biao Wu, Jianhao Wang, Hong Wang*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.27
引用:Zhou Y, Wu B, Wang J, Wang H. Effect of signal-to-noise ratio on the automatic clustering of X-ray diffraction patterns from combinatorial libraries. MGE Advances. 2024; 2(1): e27. https://doi.org/10.1002/mgea.27
扫描阅读原文
14. Prediction of ultimate tensile strength of Al-Si alloys based on multimodal fusion learning
Longfei Zhu, Qun Luo, Qiaochuan Chen, Yu Zhang, Lijun Zhang, Bin Hu, Yuexing Han*, Qian Li*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.26
引用:Zhu L, Luo Q, Chen Q, et al. Prediction of ultimate tensile strength of Al-Si alloys based on multimodal fusion learning. MGE Advances. 2024; 2(1): e26. https://doi.org/10.1002/mgea.26
扫描阅读原文
15. Employing deep learning in non-parametric inverse visualization of elastic–plastic mechanisms in dual-phase steels
Siyu Han, Chenchong Wang*, Yu Zhang, Wei Xu, Hongshuang Di
https://onlinelibrary.wiley.com/doi/10.1002/mgea.29
引用:Han S, Wang C, Zhang Y, Xu W, Di H. Employing deep learning in non-parametric inverse visualization of elastic–plastic mechanisms in dual-phase steels. MGE Advances. 2024; 2(1): e29. https://doi.org/10.1002/mgea.29
扫描阅读原文
16. A comparative study of machine learning in predicting the mechanical properties of the deposited AA6061 alloys via additive friction stir deposition
Qian Qiao, Quan Liu, Jiong Pu, Haixia Shi, Wenxiao Li, Zhixiong Zhu, Dawei Guo*, Hongchang Qian, Dawei Zhang, Xiaogang Li, C. T. Kwok, L. M. Tam*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.31
引用:Qiao Q, Liu Q, Pu J, et al. A comparative study of machine learning in predicting the mechanical properties of the deposited AA6061 alloys via additive friction stir deposition. MGE Advances. 2024; 2(1): e31.
https://doi.org/10.1002/mgea.31
扫描阅读原文
17. Integrated Multiscale Unifying Phase-field Modellings (UPFM)
Yuhong Zhao*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.44
引用:Zhao Y. Integrated unified phase-field modeling (UPFM). MGE Advances. 2024; 2(2): e44. https://doi.org/10.1002/mgea.44
扫描阅读原文
18. Design of advanced steels by integrated computational materials engineering
Xiao-Gang Lu*, Yanlin He, Weisen Zheng
https://onlinelibrary.wiley.com/doi/10.1002/mgea.36
引用:Lu X-G, He Y, Zheng W.Design of advanced steels by integrated computational materials engineering. MGE Advances. 2024; 2(2): e36.
https://doi.org/10.1002/mgea.36
扫描阅读原文
19. Development of thermodynamic database of the Mn-RE (RE=rare earth metals) binary systems
Hongjian Ye, Jiang Wang*, Qing Chen, Guanghui Rao, Huaiying Zhou
https://onlinelibrary.wiley.com/doi/10.1002/mgea.39
引用:Ye H, Wang J, Chen Q, RaoG, Zhou H. Development of thermodynamic database of the Mn-RE (RE = rare earth metals) binary systems. MGE Advances. 2024; 2(2): e39. https://doi.org/10.1002/mgea.39
扫描阅读原文
20. The anodic dissolution kinetics of Mg alloys in water based on ab initio molecular dynamics simulations
Jieqiong Yan, Xinchen Xu, Gaoning Shi, Yaowei Wang, Chaohong Guan, Yuyang Chen, Yao Yang, Tao Ying, Hong Zhu*, Qingli Tang*, Xiaoqin Zeng
https://onlinelibrary.wiley.com/doi/10.1002/mgea.47
引用:Yan J, Xu X, Shi G, et al.The anodic dissolution kinetics of Mg alloys in water based on ab initio molecular dynamics simulations. MGE Advances. 2024; 2(2): e47. https://doi.org/10.1002/mgea.47
扫描阅读原文
21. Optimal design of high-performance rare-earth-free wrought magnesium alloys by machine learning
Shaojie Li, Zaixing Dong, Jianfeng Jin*, Hucheng Pan, Zongqing Hu, Rui Hou, Gaowu Qin*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.45
引用:Li S, Dong Z, Jin J, et al.Optimal design of high-performance rare-earth-free wrought magnesium alloys using machine learning. MGE Advances. 2024; 2(2): e45. https://doi.org/10.1002/mgea.45
扫描阅读原文
22. Data mining accelerated the design strategy of multi-principal element alloys with desired mechanical properties based on genetic algorithm optimization
Xianzhe Jin, Hong Luo*, Xuefei Wang, Hongxu Cheng, Chunhui Fan, Xiaogang Li
https://onlinelibrary.wiley.com/doi/10.1002/mgea.49
引用:Jin X, Luo H, Wang X, et al.Data mining accelerated the design strategy of high-entropy alloys with the largest hardness based on genetic algorithm optimization. MGE Advances. 2024; 2(2): e49.
https://doi.org/10.1002/mgea.49
扫描阅读原文
23. Bond sensitive graph neural networks for predicting high temperature superconductors
Liang Gu, Yang Liu, Pin Chen,*, Haiyou Huang,*, Ning Chen, Yang Li, Turab Lookman, Yutong Lu, Yanjing Su*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.48
引用:Gu L, Liu Y, Chen P, et al. Bond sensitive graph neural networks for predicting high temperature superconductors. MGE Advances. 2024; 2(2): e48. https://doi.org/10.1002/mgea.48
扫描阅读原文
24. Unexpected nucleation mechanism of T1 precipitates by Eshelby inclusion with unstable stacking faults
Shuo Wang, Junsheng Wang*, Chengpeng Xue, Xinghai Yang, Guangyuan Tian, Hui Su, Yisheng Miao, Quan Li, Xingxing Li
https://onlinelibrary.wiley.com/doi/10.1002/mgea.33
引用:Wang S, Wang J, Xue C,et al. Unexpected nucleation mechanism of T1precipitates by Eshelby inclusion with unstable stacking faults. MGE Advances. 2024; 2(2): e33. https://doi.org/10.1002/mgea.33
扫描阅读原文
25. An ensemble learning strategy for multi-source hydrogen embrittlement data by introducing missing information
Xujie Gong, Ruichao Lei, Ruize Sun, Xue Jiang, Yanjing Su, Yu Yan*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.35
引用:Gong X, Lei R, Sun R, Jiang X, Su Y, Yan Y. An ensemble learning strategy for multi-source hydrogen embrittlement data by introducing missing information. MGE Advances.2024; 2(2): e35.
https://doi.org/10.1002/mgea.35
扫描阅读原文
26. High-throughput study of X-ray-induced synthesis of flower-like CuxO
Qingyun Hu, Lingyue Zhu, Genmao Zhuang, Jian Hui*, Yang Ren, Hong Wang*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.59
引用:Hu Q, Zhu L, Zhuang G, Wang H, Ren Y, Hui J. High-throughput study of X-ray-induced synthesis of flower-like CuxO. MGE Advances. 2024; 2(3): e59. https://doi.org/10.1002/mgea.59
扫描阅读原文
27. On the potential of using ensemble learning algorithm to approach the partitioning coefficient (k) value in Scheil-Gulliver equation
Ziyu Li*, He Tan, Anders E.W. Jarfors*, Jacob Steggo, Lucia Lattanzi, Per Jansson
https://onlinelibrary.wiley.com/doi/10.1002/mgea.46
引用:Li Z, Tan H, Jarfors AEW,Steggo J, Lattanzi L, Jansson P. On the potential of using ensemble learning algorithm to approach the partitioning coefficient (k) value in Scheil–Gulliverequation. MGE Advances. 2024; 2(3): e46. https://doi.org/10.1002/mgea.46
扫描阅读原文
28. Systematic assessment of various universal machine-learning interatomic potentials
Haochen Yu, Matteo Giantomassi, Giuliana Materzanini, Junjie Wang, Gian-Marco Rignanese*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.58
引用:Yu H, Giantomassi M,Materzanini G, Wang J, Rignanese G-M. Systematic assessment of various universal machine-learning interatomic potentials. MGE Advances. 2024; 2(3): e58. https://doi.org/10.1002/mgea.58
扫描阅读原文
29. Development of a two-dimensional bipolar electrochemistry technique for high throughput corrosion screening
Yiqi Zhou*, Dirk Lars Engelberg
https://onlinelibrary.wiley.com/doi/10.1002/mgea.57
引用:Zhou Y, Engelberg DL.Development of a two-dimensional bipolar electrochemistry technique for high throughput corrosion screening. MGE Advances. 2024; 2(3): e57. https://doi.org/10.1002/mgea.57
扫描阅读原文
30. Multi-objective optimization of three mechanical properties of Mg alloys through machine learning
Wei Gou, Zhang-Zhi Shi*, Yuman Zhu, Xin-Fu Gu, Fu-Zhi Dai, Xing-Yu Gao*, Lu-Ning Wang*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.54
引用:Gou W, Shi Z-Z, Zhu Y, et al. Multi-objective optimization of three mechanical properties of Mg alloys through machine learning. MGE Advances. 2024; 2(3): e54. https://doi.org/10.1002/mgea.54
扫描阅读原文
31. Machine-learning-assisted intelligent synthesis of UiO-66(Ce): Balancing the trade-off between structural defects and thermal stability for efficient hydrogenation of dicyclopentadiene
Jing Lin, Tao Ban, Tian Li, Ye Sun, Shenglan Zhou, Rushuo Li, Yanjing Su, Jitti Kasemchainan, Hongyi Gao*, Lei Shi*, Ge Wang*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.61
引用:Lin J, Ban T, Li T, et al.Machine-learning-assisted intelligent synthesis of UiO-66 (Ce): balancing the trade-off between structural defects and thermal stability for efficient hydrogenation of Dicyclopentadiene. MGE Advances. 2024; 2(3): e61. https://doi.org/10.1002/mgea.61
扫描阅读原文
32. A machine learning based on crystal graph network and application in development of functional materials
Gang Xu*, You Xue, Xiaoxiao Geng, Xinmei Hou, Jinwu Xu*
https://onlinelibrary.wiley.com/doi/10.1002/mgea.38
引用:Xu G, Xue Y, Geng X, HouX, Xu J. A machine learning-based crystal graph network and its application in development of functional materials. MGE Advances. 2024; 2(3): e38. https://doi.org/10.1002/mgea.38
扫描阅读原文
33. Predicting the effect of cooling rates and initial hydrogen concentrations on porosity formation in Al-Si castings
Qinghuai Hou, Junsheng Wang*, Yisheng Miao, Xingxing Li, Xuelong Wu, Zhongyao Li, Guangyuan Tian, Decai Kong, Xiaoying Ma, Haibo Qiao, Wenbo Wang, Yuling Lang
https://onlinelibrary.wiley.com/doi/10.1002/mgea.37
引用:Hou Q, Wang J, Miao Y,et al. Predicting the effect of cooling rates and initial hydrogen concentrations on porosity formation in Al-Si castings. MGE Advances. 2024; 2(3): e37. https://doi.org/10.1002/mgea.37
扫描阅读原文
34. Accelerating spin Hall conductivity predictions via machine learning
Jinbin Zhao, Junwen Lai, Jiantao Wang, Yi-Chi Zhang, Junlin Li, Xing-Qiu Chen, Peitao Liu
https://onlinelibrary.wiley.com/doi/10.1002/mgea.67
引用:Zhao J, Lai J, Wang J, et al. Accelerating spin Hall conductivity predictions via machine learning. MGE Advances. 2024; 2(4): e67.
https://doi.org/10.1002/mgea.67
扫描阅读原文
35. High-dimensional Bayesian optimization for metamaterial design
Zhichao Tian, Yang Yang, Sui Zhou, Tian Zhou, Ke Deng, Chunlin Ji, Yejun He, Jun S. Liu
https://onlinelibrary.wiley.com/doi/full/10.1002/mgea.79
引用:Tian Z, Yang Y, Zhou S,et al. High-dimensional Bayesian optimization for metamaterial design. MGE Advances. 2024; 2(4): e79.
https://doi.org/10.1002/mgea.79
扫描阅读原文
36. Predicting the glass transition temperature of polymer based on generative adversarial networks and automated machine learning
Zhanjie Liu, Yixuan Huo, Qionghai Chen, Siqi Zhan, Qian Li, Qingsong Zhao, Lihong Cui, Jun Liu
https://onlinelibrary.wiley.com/doi/full/10.1002/mgea.78
引用:Liu Z, Huo Y, Chen Q, et al. Predicting the glass transition temperature of polymer based on generative adversarial networks and automated machine learning. MGE Advances. 2024; 2(4): e78.
https://doi.org/10.1002/mgea.78
扫描阅读原文
37. PDGPT: A large language model for acquiring phase diagram information in magnesium alloys
Zini Yan, Hongyu Liang, Jingya Wang, Hongbin Zhang, Alisson Kwiatkowski da Silva, Shiyu Liang, Ziyuan Rao, Xiaoqin Zeng
https://onlinelibrary.wiley.com/doi/full/10.1002/mgea.77
引用:Yan Z, Liang H, Wang J, et al. PDGPT: a large language model for acquiring phase diagram information in magnesium alloys. MGE Advances. 2024; 2(4): e77. https://doi.org/10.1002/mgea.77
扫描阅读原文
38. Interpretable machine learning for stability and electronic structure prediction of Janus III–VI van der Waals heterostructures
Yudong Shi, Yinggan Zhang, Jiansen Wen, Zhou Cui, Jianhui Chen, Xiaochun Huang, Cuilian Wen, Baisheng Sa, Zhimei Sun
https://onlinelibrary.wiley.com/doi/full/10.1002/mgea.76
引用:Shi Y, Zhang Y, Wen J, et al.Interpretable machine learning for stability and electronic structure prediction of Janus III–VI van der Waals heterostructures. MGE Advances. 2024; 2(4): e76.
https://doi.org/10.1002/mgea.76
扫描阅读原文
39. Machine learning-assisted performance analysis of organic photovoltaics
Sijing Zhong, Jiayi Huang, Hengyu Meng, Zhuo Feng, Qianyue Wang, Zhenyu Huang, Lijie Zhang, Shiwei Li, Weiyang Gong, Yusen Huang, Lei Ying, Ning Li
https://onlinelibrary.wiley.com/doi/full/10.1002/mgea.74
引用:Zhong S, Huang J, Meng H, et al. Machine learning-assisted performance analysis of organic photovoltaics. MGE Advances. 2024; 2(4): e74.
https://doi.org/10.1002/mgea.74
扫描阅读原文
40. Enhancing creep rupture life prediction of high-temperature titanium alloys using convolutional neural networks
Bangtan Zong, Jinshan Li, Changlu Zhou, Ping Wang, Bin Tang, Ruihao Yuan
https://doi.org/10.1002/mgea.68
引用:Zong B, Li J, Zhou C, Wang P, Tang B, Yuan R. Enhancing creep rupture life prediction of high-temperature titanium alloys using convolutional neural networks. MGE Advances. 2024; e68.
https://doi.org/10.1002/mgea.68
扫描阅读原文
41. Prediction of dynamic recrystallization behavior of SAE52100 large section bearing steel based on machine learning
Peiheng Ding, Changqing Shu, Shasha Zhang, Zhaokuan Zhang, Xingshuai Liu, Jicong Zhang, Qian Chen, Shuaipeng Yu, Xiaolin Zhu, Zhengjun Yao
https://onlinelibrary.wiley.com/doi/full/10.1002/mgea.75
引用:Ding P, Shu C, Zhang S, et al. Prediction of dynamic recrystallization behavior of SAE52100 large section bearing steel based on machine learning. MGE Advances. 2024; 2(4): e75. https://doi.org/10.1002/mgea.75
扫描阅读原文
点击以下链接查看更多往期文章
【文章汇总】《材料基因工程前沿(英文)》2023年文章年度索引
【文章汇总】《材料基因工程前沿(英文)》2024年第一期文章
【文章汇总】《材料基因工程前沿(英文)》2024年第二期文章
《材料基因工程前沿(英文)》简介
《材料基因工程前沿(英文)》(Materials Genome Engineering Advances,简称:MGE Advances)作为材料基因工程领域首个高水平综合性学术期刊,其宗旨是面向国家重点战略布局与材料学科国际学术前沿发展的重大需求,聚焦材料基因工程领域,刊载先进材料计算、高通量/自动化/智能化材料实验技术、材料数据库与大数据技术等材料基因工程关键技术的研究进展和前沿成果,以及三者在材料新效应/新原理探索和新材料发现等方面的重要应用,创建一个跨学科多领域交叉融合的国际一流高水平出版平台和学术交流平台,推动新材料研发模式变革。
2022年入选“中国科技期刊卓越行动计划高起点新刊项目”。
2024年入选北京市科委“2024支持高水平国际科技期刊建设-强刊提升”项目。
2024年被世界五大文献检索系统之一的开放获取期刊目录DOAJ收录。
《材料基因工程前沿(英文)》以全OA开放获取模式,在国际出版平台Wiley Online library全文数字化上线出版。期刊采用国际先进的单篇优先出版模式,实现了最新学术成果的及时快速优先发表并高效广泛地传播给全球读者,提升了期刊的可见度和传播效率。
2026年之前投稿免APC (Article Publication Charge)
期刊主页
特刊征稿
投稿方向
投稿指南
微信公众号|mgea2023
欢迎关注!
Materials Genome Engineering Advances编辑部
地址: 北京海淀区学院路30号
邮箱: mgeadvances@ustb.edu.cn
电话: (+86) 010-6233 3882
期刊网址:
https://onlinelibrary.wiley.com/journal/29409497