Geoderma | 欧洲土地利用和气候介导的土壤细菌和真菌生物量变化及其驱动因素

文摘   2023-04-30 23:19   甘肃  

题目:

Land-use- and climate-mediated variations in soil bacterial and fungal biomass across Europe and their driving factors


作者:

panelJosé A. Siles a*, Alfonso Vera a, Marta Díaz-López a, Carlos García a, Johan van den Hoogen b, Thomas W. Crowther b, Nico Eisenhauer c d, Carlos Guerra c e, Arwyn Jones f, Alberto Orgiazzi f, Manuel Delgado-Baquerizo g h, Felipe Bastida a

单位:

a*Department of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Murcia, Spain

bDepartment of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland

cGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany

dInstitute of Biology, Leipzig University, Leipzig, Germany

eInstitute of Biology, Martin Luther University Halle Wittenberg, Halle (Saale), Germany

fEuropean Commission, Joint Research Centre, Ispra, Italy

gLaboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain

hUnidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain

Highlights

•对欧洲各地的土壤细菌和真菌生物量的含量进行了定量。

•土地利用和气候共同控制土壤细菌和真菌的生物量。

•土壤农业用途缓冲了恶劣气候条件对细菌的影响。

•土壤质地、有机碳和有机氮是土壤微生物生物量的预测因子。

•土壤微生物生物量不受作物类型的影响。

Abstract

阐明在欧洲尺度上不同土地利用和气候条件下土壤细菌和真菌生物量的含量和驱动因素,有助于制定适当的政策来保护土壤微生物提供的生态系统服务。在这里,我们的目标是(i)通过分析脂肪酸甲酯,量化和比较从三种不同土地用途(森林、草原和农田)和气候(干旱、温带和寒冷)收集的513种欧洲土壤中的细菌和真菌生物量;(ii)建立控制土壤细菌和真菌生物量的因素模型;(iii)调查欧洲种植谷物、油料作物和果园三种重要作物类型的农田土壤中细菌和真菌生物量的水平。细菌生物量随土地利用的减少顺序为:草地>农田>森林,温带环境中细菌生物量最高。革兰氏阳性菌和革兰氏阴性菌以及放线菌的生物量也有类似的变化规律。森林土壤真菌生物量大于农田和草地,并受较冷环境的影响。真菌与细菌之比(F/B)下降趋势如下:森林>耕地>草地,气候较冷的土壤在农田和森林中显示出更高的F/B比率。土壤质地、土壤有机碳和氮被证明直接驱动细菌和真菌生物量。在只考虑农田的情况下,不同作物类型对不同微生物群的生物量影响不大。真菌似乎比细菌更容易受到农业土壤利用的影响。此外,农业利用土壤似乎可以缓冲恶劣气候条件对土壤细菌生物量的影响。目前的研究提高了我们对土地利用和气候对整个欧洲土壤细菌和真菌生物量的综合影响的理解。

Fig. 1.Location, land-use type, and climate characterizing the 513 soils included in the study.

Fig. 2.Box plots comparing biomass (measured as fatty acid content) of soil bacteria, Gram-positive (GP) and Gram-negative (GN) bacteria, and Actinobacteria, as well as the Gram-positive/Gram-negative (GP/GN) and fungi/bacteria (F/B) ratios in croplands, grasslands, and forests under arid, temperate, and cold climates. P-values of two-way PERMANOVA for the factors land use (LU) and climate (C), and their interaction are shown at the top of each figure. Different lowercase letters above each box denote significant differences among climates within each land use, and different capital letters denote significant differences among land uses within each climate according to pairwise permutation tests. The boxes represent the interquartile range (IQR) between the first and third quartiles (25th and 75th percentiles, respectively), and the vertical line inside the box defines the median. Whiskers represent the lowest and highest values within 1.5 times the IQR from the first and third quartiles, respectively. Dots represent outliers.

Fig. 3.Random forest mean predictor importance (% increase in MSE (mean square error)) of the studied variables as predictors of biomass of soil bacteria, Gram-positive (GP) and Gram-negative (GN) bacteria, and Actinobacteria, as well as the Gram-positive/Gram-negative (GP/GN) and fungi/bacteria (F/B) ratios. Significance levels are shown at *P < 0.05 and **P ≤ 0.001. Predictors belonging to the same category were represented with the same color according to the legend. VE = variance explained (%). LU = land use. MAP = mean annual precipitation. MAT = mean annual temperature. AI = aridity index. NPP = net primary production. Sand, silt, and clay = soil sand, silt, and clay contents, respectively. BD = bulk density. EC = electrical conductivity. SOC = soil organic carbon. N and P = soil total nitrogen and phosphorus, respectively. K = extractable potassium.

Fig. 4. Dependences of soil bacterial and fungal biomass and the fungi/bacteria (F/B) ratio on selected environmental variables evaluated by regression analyses. The best model (linear or quadratic) fitting each regression is indicated at the top of each figure. Shaded areas represent 95 % confidence intervals for the regression line. R2 and P-values are shown for each regression analysis. Sand = soil sand content. SOC = soil organic carbon. N and P = soil total nitrogen and phosphorus, respectively. MAT = mean annual temperature.

Fig. 5.SEM (structural equation modeling) assessing the direct and indirect effects of selected factors on soil bacterial and fungal biomass and the fungi/bacteria (F/B) ratio. Numbers adjacent to arrows are standardized path coefficients and are indicative of the effect size. Only significant effects (P < 0.05) are indicated, and significance levels are shown at *P < 0.05 and **P ≤ 0.001. Continuous, dashed, and double-lined arrows indicate positive, negative, and mixed relationships, respectively. Underlined path coefficients indicate quadratic relationships. In the SEM on F/B, double-headed arrows represent covariance between variables. R2 denotes the proportion of variance explained for every response variable by the model. The models were satisfactorily fitted to data, as suggested by non-significant χ2 values and non-parametric bootstrap, and by values of RMSEA (root mean square error of approximation) and CIF (comparative fit index). MAT = mean annual temperature. NPP = net primary production. AI = aridity index. Sand = soil sand content. N and P = soil total nitrogen and phosphorus, respectively.

Conclusion

欧洲土壤细菌和真菌生物量以及F/B比受到土地利用和气候的影响。细菌在草原和温带环境中更为丰富,而真菌在森林和寒冷气候中占主导地位。真菌生物量比细菌生物量更容易受到土壤农业管理的影响。事实上,土壤的农业利用似乎通过缓冲恶劣气候条件的负面影响而有利于细菌生物量。土壤质地、有机碳和氮是直接影响细菌和真菌生物量的主要因素。土壤有机碳和氮又受到土地利用、气候和植物覆盖的调节。因此,在欧洲制定更可持续的农业政策,以恢复和保护土壤微生物生物量,应通过土壤物理和化学性质的变化,考虑地下和地上群落与环境条件之间的这些复杂关系。作物类型对农田细菌和真菌生物量的影响不显著,这可以解释为不同作物间有机碳含量差异不显著。需要进一步研究确定农田多功能土壤微生物群落的具体农业实践。



环境科学笔记
分享关于环境科学,生态学,土壤学等经典的、最新的科研进展。
 最新文章