11月20日,记者从中国科学院高能物理研究所了解到,江门中微子实验探测器主体已于今日建成。这一标志性成就预示着该项目即将进入下一阶段——超纯水与液体闪烁体的灌装,并预计于2025年8月正式运行取数。
△10月9日拍摄的建设中的江门中微子实验中心探测器(拼接照片)。来源:新华社
中微子
作为构成物质世界的基本粒子之一,中微子不仅是宇宙中最古老、数量最多的物质粒子,还因质量极轻、运动速度接近光速且几乎不与任何物质发生反应而极具神秘色彩,从1956年人类发现中微子以来,对中微子的探索与研究从未停止,然而由于中微子极难探测,使其至今还有很多未解之谜。
为了深入探索中微子的奥秘,江门中微子实验于2013年立项,2015年正式开工建设。该实验以测量中微子质量顺序为首要科学目标,并同步进行超新星中微子、地球中微子、太阳中微子、大气中微子、质子衰变等多项重大前沿交叉研究。
江门中微子实验的核心探测设备是一个位于地下700米的巨型液体闪烁体探测器。该探测器被安置在地下实验大厅内一个深达44米的池子中央。其主体结构为一个直径41.1米的不锈钢网壳,这一坚固的支撑结构能够承载直径35.4米的有机玻璃球、2万吨液体闪烁体、以及数以万计的光电倍增管、电缆、防磁线圈、隔光板等关键探测器部件。
尤为值得一提的是,江门中微子实验探测器主体采用了世界上最大的单体有机玻璃结构,共计263块、每块厚度达120毫米的有机玻璃拼接而成。这种“薄如蛋壳”的玻璃球不仅拥有出色的抗拉扯和抗撞击性能,还能在内外不同压强的液体环境中保持稳定,满足未来30年的使用需求。待所有安装任务完成后,科研人员将在有机玻璃球内注入特制的液体闪烁体,并在放置探测器的池中注入超纯水,直至将整个探测器完全淹没。
中国科学院高能物理研究所所长、江门中微子实验首席科学家王贻芳表示:“通过江门中微子实验这一大科学装置来认识、研究中微子,对于粒子物理、天体物理、宇宙学等基础科学领域具有深远的意义。同时,在建设过程中,我们也在国产新型光电倍增管研制、高性能液体闪烁体研制、超大型高精度探测器设计制造、超大跨度实验洞室等一系列前沿技术领域取得了实质性突破,充分展现了大科学计划对技术和产业发展的强大拉动作用。”
此外,江门中微子实验正日益成为国际科研合作的新典范。王贻芳透露,该项目已吸引来自17个国家和地区、74个研究机构的750位科研人员积极参与。通过经费投入分担、技术共同研发、科研成果共享的方式,江门中微子实验正有力推动全球中微子研究领域的共同进步与发展。
江门中微子实验的近点实验
落地台山核电
近日,中国科学院与中广核合作,将在台山核电站开展台山中微子实验项目,双方已签订合作协议,将共享科研创新成果。
目前,台山中微子实验项目实验设备现场安装工作已全面启动,台山核电于11月2日实施了钢罐、铜壳、有机玻璃球等探测器主体设备吊装入场。
问
为什么要开展台山中微子实验项目?
答
作为中国科学院和广东省共同建设的大科学装置,江门中微子实验室是我国主导的大型国际科学合作项目,以测定中微子质量顺序、精确测量中微子混合参数为主要科学目标。
台山中微子实验(TAO)是江门中微子实验的近点实验,其建设目的是测量高能量分辨的反应堆中微子能谱,为江门中微子实验(JUNO)提供输入。
问
为什么选址台山核电站?
答
中微子几乎不与物质发生相互作用,因此如何捕获足够多的中微子信号,是实验首要考虑的因素之一。反应堆运行时的中微子产额正比于堆芯功率,而台山核电站有世界上单堆功率最大的反应堆,因此是中微子探测实验的理想中微子源。
台山核电站
中微子探测器要尽可能大,基线距离(探测器和源的直线距离)要尽可能小,才能最大化中微子捕获能力。而台山核电站核岛进出厂房内,足以布置一台吨级的短基线探测器。
问
台山中微子实验和江门中微子实验有什么不同?
答
这两个实验的定位完全不同,且前者是后者的子实验,严格来说不具有可比性。如果真要比较的话,台山中微子实验的体量(吨级),远小于江门中微子实验(万吨级)。但得益于其短基线,在同样时间内,台山中微子实验可捕获的中微子数是江门中微子实验的20倍。
台山中微子实验的硅光电倍增器。
江门中微子实验的光电倍增管。
江门中微子实验的中微子信号相对弱,需要在地下700米进行,而台山中微子实验可以部署在近地表。
在技术上,江门中微子实验探测器采用光电倍增管且常温运行,能量分辨率在大型液体闪烁体探测器中达到了前所未有的3%。台山中微子实验探测器采用硅光电倍增器,且运行于零下50度,能量分辨率达到2%,是国际上能量分辨率最高的液闪探测器。
编辑:马舒
二审:艾曾
三审:苏伟城
关注侨见视频
关注“海内海外两个江门”
🌟这些文章大家都在看🌟