最强总结!SQL Server/MySQL/Oracle函数完全指南!!

科技   2024-11-13 09:01   广东  
点击关注公众号,SQL干货及时获取
后台回复:1024,获取500G视频教程
推荐阅读
转行成为数据分析师
牛逼,OpenAI新模型 o1 国内直接连!
《SQL145题第2版》正式发布!

大家好,我是岳哥。

这是《最强总结》系列第二篇,昨天分享的还没阅读的可以看这篇:

最强总结!数据库开窗函数完全指南!!

今天给大家总结的是SQL Server/MySQL/Oracle这三个关系数据库的函数内容,包含常用和不常用的。

这些总结都是此前整理好后保存的,最近集中发布,觉得有帮助,记得三连(点赞+转发+在看),岳哥才会更有动力继续发布。此外,大家也可以留言需要哪方面的总结。

需要本文PDF版本的同学,可以在公众号后台回复:函数

  1. 字符串函数
  2. 数值函数
  3. 日期时间函数
  4. 条件和控制函数
  5. 窗口函数
  6. JSON函数(MySQL 5.7+)
  7. 加密和安全函数
  8. XML函数(SQL Server)
  9. 正则表达式函数
  10. 系统信息函数
  11. 高级聚合函数
  12. 统计和数学函数
  13. 字符串模式匹配函数
  14. 条件和流程控制增强
  15. 表分析函数
  16. 实用复合函数示例

1. 字符串函数

1.1 基础字符串函数

  1. LENGTH/LEN/LENGTH - 获取字符串长度
-- MySQL
SELECT LENGTH('Hello World');  -- 11
-- SQL Server  
SELECT LEN('Hello World');    -- 11
-- Oracle
SELECT LENGTH('Hello World'FROM DUAL;  -- 11
  1. CHAR_LENGTH - 获取字符数(区别于字节长度)
-- MySQL & Oracle
SELECT CHAR_LENGTH('你好');  -- 2
  1. SUBSTRING/SUBSTR - 截取字符串
-- MySQL & SQL Server
SELECT SUBSTRING('Hello World'15);  -- 'Hello'
SELECT SUBSTRING('Hello World'-5);     -- 'World'

-- Oracle
SELECT SUBSTR('Hello World'15FROM DUAL;
  1. LEFT/RIGHT - 从左/右截取
-- MySQL & SQL Server
SELECT LEFT('Hello World'5);   -- 'Hello'
SELECT RIGHT('Hello World'5);  -- 'World'
  1. REPLACE - 替换字符串
-- 所有数据库通用
SELECT REPLACE('Hello World''World''SQL');  -- 'Hello SQL'
  1. STUFF - 字符串替换(SQL Server特有)
SELECT STUFF('Hello World'15'Hi');  -- 'Hi World'
  1. POSITION/INSTR/CHARINDEX - 查找子字符串位置
-- MySQL
SELECT POSITION('World' IN 'Hello World');  -- 7

-- Oracle
SELECT INSTR('Hello World''World'FROM DUAL;  -- 7

-- SQL Server
SELECT CHARINDEX('World''Hello World');  -- 7
  1. REVERSE - 反转字符串
-- 所有数据库
SELECT REVERSE('Hello');  -- 'olleH'
  1. SPACE - 生成空格字符串
-- SQL Server & MySQL
SELECT 'Hello' + SPACE(1) + 'World';  -- 'Hello World'
  1. REPEAT/REPLICATE - 重复字符串
-- MySQL
SELECT REPEAT('SQL'3);  -- 'SQLSQLSQL'

-- SQL Server
SELECT REPLICATE('SQL'3);  -- 'SQLSQLSQL'

1.2 高级字符串函数

  1. FORMAT - 格式化字符串
-- MySQL & SQL Server
SELECT FORMAT(123456.7892);  -- '123,456.79'
  1. STRING_SPLIT(SQL Server)/SPLIT_STRING(MySQL) - 字符串分割
-- SQL Server
SELECT value FROM STRING_SPLIT('a,b,c'',');

-- MySQL
SELECT SUBSTRING_INDEX('a,b,c'','1);  -- 'a'
  1. GROUP_CONCAT/STRING_AGG - 字符串聚合
-- MySQL
SELECT GROUP_CONCAT(name SEPARATOR ','FROM employees;

-- SQL Server
SELECT STRING_AGG(name','FROM employees;

-- Oracle
SELECT LISTAGG(name','WITHIN GROUP (ORDER BY nameFROM employees;

2. 数值函数

2.1 基础数学函数

  1. ROUND/TRUNC/TRUNCATE - 截断
-- 所有数据库
SELECT ROUND(123.4562);  -- 123.46

-- Oracle
SELECT TRUNC(123.4562FROM DUAL;  -- 123.45

-- MySQL
SELECT TRUNCATE(123.4562);  -- 123.45
  1. MOD - 取模
-- 所有数据库
SELECT MOD(103);  -- 1
  1. SQRT - 平方根
SELECT SQRT(16);  -- 4
  1. SIGN - 获取数字符号
SELECT SIGN(-10);  -- -1
SELECT SIGN(10);   -- 1
SELECT SIGN(0);    -- 0

2.2 高级数学函数

  1. LOG/LOG10/LN - 对数运算
SELECT LOG(10100);  -- 2
SELECT LOG10(100);    -- 2
SELECT LN(2.7);       -- 0.993
  1. EXP - 指数运算
SELECT EXP(1);  -- 2.718281828459045
  1. RAND/RANDOM - 随机数
-- MySQL & SQL Server
SELECT RAND();

-- Oracle
SELECT DBMS_RANDOM.VALUE FROM DUAL;

3. 日期时间函数

3.1 获取日期时间

  1. NOW/GETDATE/SYSDATE - 当前日期时间
-- MySQL
SELECT NOW();

-- SQL Server
SELECT GETDATE();

-- Oracle
SELECT SYSDATE FROM DUAL;
  1. CURDATE/CURRENT_DATE - 当前日期
-- MySQL
SELECT CURDATE();

-- Oracle & SQL Server
SELECT CURRENT_DATE;
  1. CURTIME/CURRENT_TIME - 当前时间
-- MySQL
SELECT CURTIME();

-- Oracle & SQL Server
SELECT CURRENT_TIME;

3.2 日期时间处理

  1. DATE_ADD/DATEADD - 日期加减
-- MySQL
SELECT DATE_ADD('2024-03-12'INTERVAL 1 DAY);
SELECT DATE_ADD('2024-03-12'INTERVAL 1 MONTH);
SELECT DATE_ADD('2024-03-12'INTERVAL 1 YEAR);

-- SQL Server
SELECT DATEADD(day1'2024-03-12');
SELECT DATEADD(month1'2024-03-12');
SELECT DATEADD(year1'2024-03-12');
  1. DATE_FORMAT/FORMAT - 日期格式化
-- MySQL
SELECT DATE_FORMAT('2024-03-12''%Y年%m月%d日');  -- '2024年03月12日'

-- SQL Server
SELECT FORMAT(GETDATE(), 'yyyy年MM月dd日');
  1. EXTRACT/DATEPART - 提取日期部分
-- MySQL & Oracle
SELECT EXTRACT(YEAR FROM '2024-03-12');
SELECT EXTRACT(MONTH FROM '2024-03-12');
SELECT EXTRACT(DAY FROM '2024-03-12');

-- SQL Server
SELECT DATEPART(year'2024-03-12');
SELECT DATEPART(month'2024-03-12');
SELECT DATEPART(day'2024-03-12');
  1. LAST_DAY - 获取月末日期
-- MySQL & Oracle
SELECT LAST_DAY('2024-03-12');  -- '2024-03-31'

4. 条件和控制函数

  1. IF/IIF - 条件判断
-- MySQL
SELECT IF(1 > 0'True''False');

-- SQL Server
SELECT IIF(1 > 0'True''False');
  1. IFNULL/ISNULL/NVL - NULL值处理
-- MySQL
SELECT IFNULL(NULL'Default');

-- SQL Server
SELECT ISNULL(NULL'Default');

-- Oracle
SELECT NVL(NULL'Default'FROM DUAL;
  1. NULLIF - 相等返回NULL
SELECT NULLIF(1010);  -- NULL
SELECT NULLIF(1020);  -- 10
  1. GREATEST/LEAST - 最大最小值
-- MySQL & Oracle
SELECT GREATEST(12345);  -- 5
SELECT LEAST(12345);     -- 1

5. 窗口函数

  1. ROW_NUMBER/RANK/DENSE_RANK - 排序
SELECT 
    name,
    salary,
    ROW_NUMBER() OVER (ORDER BY salary DESCas row_num,
    RANK() OVER (ORDER BY salary DESCas rank_num,
    DENSE_RANK() OVER (ORDER BY salary DESCas dense_rank_num
FROM employees;
  1. FIRST_VALUE/LAST_VALUE - 首尾值
SELECT 
    name,
    department,
    salary,
    FIRST_VALUE(salary) OVER (PARTITION BY department ORDER BY salary DESCas highest_salary,
    LAST_VALUE(salary) OVER (PARTITION BY department ORDER BY salary DESC 
        RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWINGas lowest_salary
FROM employees;
  1. LAG/LEAD - 前后行
SELECT 
    name,
    department,
    salary,
    LAG(salary) OVER (PARTITION BY department ORDER BY salary) as prev_salary,
    LEAD(salary) OVER (PARTITION BY department ORDER BY salary) as next_salary
FROM employees;
  1. NTILE - 分组
SELECT 
    name,
    salary,
    NTILE(4OVER (ORDER BY salary) as quartile
FROM employees;

6. JSON函数(MySQL 5.7+)

  1. JSON_EXTRACT - 提取JSON值
SELECT JSON_EXTRACT('{"name": "John", "age": 30}''$.name');  -- "John"
  1. JSON_OBJECT - 创建JSON对象
SELECT JSON_OBJECT('name''John''age'30);
  1. JSON_ARRAY - 创建JSON数组
SELECT JSON_ARRAY(12345);
  1. JSON_CONTAINS - 检查JSON包含
SELECT JSON_CONTAINS('{"a": 1, "b": 2}''1''$.a');  -- 1

7. 加密和安全函数

  1. MD5 - MD5加密
-- MySQL & SQL Server
SELECT MD5('password');
  1. SHA1/SHA2 - SHA加密
-- MySQL
SELECT SHA1('password');
SELECT SHA2('password'256);
  1. ENCRYPT/DECRYPT - 加密解密
-- MySQL
SET @key = 'secret_key';
SET @encrypted = AES_ENCRYPT('text', @key);
SELECT AES_DECRYPT(@encrypted, @key);

8. XML函数(SQL Server)

  1. FOR XML PATH - 生成XML
SELECT name, age
FROM employees
FOR XML PATH('employee'), ROOT('employees')
  1. XML数据类型方法
DECLARE @xml XML
SET @xml = '<root><child>value</child></root>'
SELECT @xml.value('(/root/child)[1]''varchar(50)')

9. 正则表达式函数

  1. REGEXP/RLIKE - 正则匹配(MySQL)
SELECT 'hello' REGEXP '^h';  -- 1
SELECT 'hello' RLIKE 'l+';   -- 1
  1. REGEXP_LIKE - 正则匹配(Oracle)
SELECT * FROM employees WHERE REGEXP_LIKE(email, '^[A-Za-z]+@[A-Za-z]+\.[A-Za-z]{2,4}$');

10. 系统信息函数

  1. VERSION - 数据库版本
-- MySQL
SELECT VERSION();

-- SQL Server
SELECT @@VERSION;

-- Oracle
SELECT * FROM V$VERSION;
  1. USER/CURRENT_USER - 当前用户
-- 所有数据库
SELECT USER;
SELECT CURRENT_USER;
  1. DATABASE/DB_NAME - 当前数据库
-- MySQL
SELECT DATABASE();

-- SQL Server
SELECT DB_NAME();

11. 高级聚合函数

  1. GROUPING SETS - 多维度聚合
SELECT department, location, COUNT(*)
FROM employees
GROUP BY GROUPING SETS (
    (department, location),
    (department),
    (location),
    ()
);
  1. CUBE - 所有可能的组合
SELECT department, location, COUNT(*)
FROM employees
GROUP BY CUBE (department, location);
  1. ROLLUP - 层次聚合
SELECT 
    COALESCE(department, 'Total'as department,
    COALESCE(location, 'Subtotal'as location,
    COUNT(*) as employee_count,
    AVG(salary) as avg_salary
FROM employees
GROUP BY ROLLUP (department, location);
  1. PIVOT - 行转列
-- SQL Server
SELECT *
FROM (
    SELECT department, location, salary
    FROM employees
AS SourceTable
PIVOT (
    AVG(salary)
    FOR location IN ([New York], [London], [Tokyo])
AS PivotTable;

12. 统计和数学函数

  1. PERCENTILE_CONT/PERCENTILE_DISC - 百分位数
SELECT 
    PERCENTILE_CONT(0.5WITHIN GROUP (ORDER BY salary) as median_salary,
    PERCENTILE_DISC(0.5WITHIN GROUP (ORDER BY salary) as discrete_median
FROM employees;
  1. CORR - 相关系数
SELECT CORR(salary, performance_score)
FROM employees;
  1. STDDEV/VARIANCE - 标准差和方差
SELECT 
    department,
    AVG(salary) as avg_salary,
    STDDEV(salary) as salary_stddev,
    VARIANCE(salary) as salary_variance
FROM employees
GROUP BY department;
  1. FIRST/LAST - 组内第一个/最后一个值
-- Oracle
SELECT 
    department,
    FIRST_VALUE(salary) OVER (PARTITION BY department ORDER BY hire_date) as first_salary,
    LAST_VALUE(salary) OVER (
        PARTITION BY department 
        ORDER BY hire_date
        RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
    ) as last_salary
FROM employees;

13. 字符串模式匹配函数

  1. LIKE模式匹配增强
-- 复杂LIKE模式
SELECT * FROM employees
WHERE 
    name LIKE '[A-M]%' -- SQL Server, 以A到M开头的名字
    AND email LIKE '%@__%.__%'-- 标准email模式

14. 条件和流程控制增强

  1. CHOOSE - 索引选择
-- SQL Server
SELECT CHOOSE(2'First''Second''Third');  -- 返回 'Second'
  1. 复杂CASE表达式
SELECT 
    employee_name,
    salary,
    CASE 
        WHEN salary <= (SELECT AVG(salary) FROM employees) THEN 'Below Average'
        WHEN salary <= (SELECT AVG(salary) + STDDEV(salary) FROM employees) THEN 'Average'
        WHEN salary <= (SELECT AVG(salary) + 2*STDDEV(salary) FROM employees) THEN 'Above Average'
        ELSE 'Exceptional'
    END as salary_category
FROM employees;

15. 表分析函数

  1. PERCENT_RANK - 百分比排名
SELECT 
    name,
    salary,
    PERCENT_RANK() OVER (ORDER BY salary) as salary_percentile
FROM employees;
  1. CUME_DIST - 累积分布
SELECT 
    name,
    salary,
    CUME_DIST() OVER (ORDER BY salary) as salary_distribution
FROM employees;

16. 实用复合函数示例

  1. 年龄计算
-- MySQL
SELECT 
    name,
    birthdate,
    TIMESTAMPDIFF(YEAR, birthdate, CURDATE()) as age,
    DATE_ADD(birthdate, 
            INTERVAL TIMESTAMPDIFF(YEAR, birthdate, CURDATE()) YEARas last_birthday,
    DATE_ADD(birthdate, 
            INTERVAL TIMESTAMPDIFF(YEAR, birthdate, CURDATE()) + 1 YEARas next_birthday
FROM employees;
  1. 工龄分析
SELECT 
    name,
    hire_date,
    CASE 
        WHEN DATEDIFF(YEAR, hire_date, GETDATE()) < 2 THEN 'Junior'
        WHEN DATEDIFF(YEAR, hire_date, GETDATE()) < 5 THEN 'Intermediate'
        WHEN DATEDIFF(YEAR, hire_date, GETDATE()) < 10 THEN 'Senior'
        ELSE 'Expert'
    END as experience_level
FROM employees;
  1. 薪资分析
WITH salary_stats AS (
    SELECT 
        department,
        AVG(salary) as avg_salary,
        STDDEV(salary) as salary_stddev
    FROM employees
    GROUP BY department
)
SELECT 
    e.name,
    e.department,
    e.salary,
    s.avg_salary,
    (e.salary - s.avg_salary) / s.salary_stddev as z_score,
    PERCENT_RANK() OVER (PARTITION BY e.department ORDER BY e.salary) as dept_percentile
FROM employees e
JOIN salary_stats s ON e.department = s.department;
  1. 考勤分析
WITH daily_attendance AS (
    SELECT 
        employee_id,
        attendance_date,
        check_in_time,
        check_out_time,
        CASE 
            WHEN check_in_time > '09:00:00' THEN 'Late'
            WHEN check_out_time < '17:00:00' THEN 'Early Leave'
            ELSE 'Normal'
        END as attendance_status
    FROM attendance
)
SELECT 
    e.name,
    COUNT(*) as total_days,
    SUM(CASE WHEN a.attendance_status = 'Late' THEN 1 ELSE 0 ENDas late_days,
    SUM(CASE WHEN a.attendance_status = 'Early Leave' THEN 1 ELSE 0 ENDas early_leave_days,
    FORMAT(COUNT(*) * 1.0 / 
           (SELECT COUNT(DISTINCT attendance_date) FROM attendance), 'P'as attendance_rate
FROM employees e
JOIN daily_attendance a ON e.id = a.employee_id
GROUP BY e.name;
  1. 销售分析
WITH monthly_sales AS (
    SELECT 
        YEAR(sale_date) as year,
        MONTH(sale_date) as month,
        SUM(amount) as total_sales,
        COUNT(DISTINCT customer_id) as customer_count
    FROM sales
    GROUP BY YEAR(sale_date), MONTH(sale_date)
)
SELECT 
    year,
    month,
    total_sales,
    customer_count,
    total_sales / customer_count as avg_customer_value,
    LAG(total_sales) OVER (ORDER BY yearmonthas prev_month_sales,
    total_sales - LAG(total_sales) OVER (ORDER BY yearmonthas sales_growth,
    FORMAT((total_sales - LAG(total_sales) OVER (ORDER BY yearmonth)) / 
           LAG(total_sales) OVER (ORDER BY yearmonth), 'P'as growth_rate
FROM monthly_sales;


最后

给大家推荐一下我们的GPT 4.0/4o/o1 preview系统,一次性买了200多个Plus会员放在这个系统的池子里,无需梯子即可直连,费用还比官网便宜一半,包售后。更多介绍点击这里每月仅需88元!
我是岳哥,每天会分享SQL和数据库相关干货并和大家聊聊近期的所见所闻
欢迎关注,下期见~

SQL数据库开发
8年开发,5年管理,一个懂职场和AI的数据人。专注数据,Ai和职场等领域。回复「1024」,领取500G技术教程
 最新文章