基因编辑技术在树木育种和遗传改良方面展现出了巨大的潜力。作为树木研究的模式物种,杨树已被广泛应用于功能基因组学研究。然而,在杨树中实现精确的基因编辑仍然具有挑战性。引导编辑(prime editing,PE)技术作为一项高度精准的基因编辑技术,能够实现任意类型的DNA序列改变,包括任意碱基替换和小片段插入缺失。鉴于PE技术的高精准性和多功能性,其已经在哺乳动物细胞和主要作物中得到广泛应用,但由于树木存在世代周期长、基因组杂合性高以及遗传转化稳定性差等问题,PE技术在树木中是否可应用仍未知。
本研究建立的PE3系统由三部分组成,分别是拟南芥AtU6启动子转录epegRNA,拟南芥AtU6启动子转录Nick gRNA,和通用型2×35S启动子表达nCas9-MMLV融合蛋白(图1A)。研究人员利用PE3系统对84K杨内源基因PagPDS,PagYUC4和PagSHR进行了不同类型的精准编辑,包括单碱基替换、多碱基替换以及小片段的插入缺失类型。随后将不同基因不同编辑类型的载体通过农杆菌介导遗传转化至84K杨中,分别在抗性愈伤组织和T0植株中测试PE3系统完成精准编辑的效率(图1B,1C,1E)。结果显示,抗性愈伤组织中,在针对单碱基替换类型的实验中,三个位点均成功检测到目标编辑,分别为0.49%(PagPDS-g1)、0.08%(PagYUC4-g1)和1.83%(PagSHR-g1)。而在多碱基替换类型的实验中,PagPDS-g2和PagYUC4-g2位点分别展示了3.82%和3.62%的编辑效率。此外,在小片段插入缺失类型的实验中,PagPDS-g3和PagYUC4-g3位点也成功检测到目标编辑,编辑效率分别为1.59%和0.22%(图1F)。进一步抗性愈伤组织分化得到T0植株,在单碱基替换类型中,PagPDS-g1和 PagSHR-g1位点鉴定到精准编辑植株,编辑效率为4.0%和3.6%;在多碱基替换类型中,PagPDS-g2和PagYUC4-g2两个位点检测到精准编辑植株,编辑效率达到15.6%和22.2%;然而在小片段的插入缺失类型中,三个位点均未检测到精准编辑植株(图1G,H)。综上所述,本研究建立的PE3系统可在84K杨中完成目标位点的精准编辑,首次证明了PE系统在杨树中应用的可行性。该研究为树木功能基因组学研究提供了高效精准编辑工具,同时也为其他双子叶植物中建立和优化PE系统提供了借鉴。但目前PE在杨树中的精准编辑效率仍较低,在未来需进一步优化。
中国水稻研究所博士后邹金鹏和亚热带林业研究所已毕业博士研究生李玉红为该论文的共同第一作者,亚热带林业研究所卓仁英研究员和中国水稻研究所王春研究员为该论文的共同通讯作者。该研究得到国家重点研发计划,中国水稻研究所重点研发项目和中国中央公益性科研院所基本科研业务费等项目的资助。感谢浙江农林大学卢孟柱教授提供84K愈伤组织。
Zou, J., Li, Y., Wang, K. et al. Prime editing enables precise genome modification of a Populus hybrid. aBIOTECH (2024). https://doi.org/10.1007/s42994-024-00177-1相关阅读:
aBIOTECH 竭诚为学者们提供以下免费服务:
▶ 论文写作指导
▶ 高质量论文图片编辑
▶ 参考文献规范化校对
▶ 对论文成果开展全球化推广
▶ 定期组织青年科学家开展学术交流
▶ 实验室招聘、团队最新成果发布等
具体事宜请添加编辑微信或拨打010—82109925/82109903详细咨询
官方唯一投稿系统:http://www.abiotech.net
编辑部邮箱:biotech@caas.cn
Editors-in-Chief:
Prof. Sanwen Huang
2023 IF 4.6
Indexed in EI, ESCI, PubMed Central, SCOPUS, CSCD, Google Scholar, CNKI, Dimensions...
The aims of aBIOTECH are two-fold: First to publish seminal articles that focus the relevant research communities to achieve development of superior agroecosystems, globally. Next, to foster national and international engagement, including business, politics, and society, to build an understanding of modern agrobiotechnology/genomics-empowered strategies, which can ensure the availability of adequate nutritious foods to feed the growing global population.
Relevant topics include, but are not limited to, the followings:TRANSGENE, GENOME EDITING TECHNOLOGIES & APPLICATIONS: Advanced transgene or genome editing technologies or methodologies; applications of transgene or genome editing in genetic improvement of agriculturally important traits, which otherwise are impossible by conventional breeding; commercialization of modified or gene-edited crops/livestock for agricultural production; safety and regulatory affairs/policies.METABOLIC ENGINEERING: Synthesis of bioactive natural products, including study of their metabolic networks and functions, using both genetic and synthetic biology approaches.TECHNOLOGIES FOR DISEASE CONTROL: Developmental, physiological, biochemical, and technological studies, and innovative strategies relevant to disease control in crop or livestock production systems.GENOMICS & BREEDING: Genome, pan-genome, and metagenome studies, multi-omics data mining approaches, intelligent design breeding theory, approaches, and practice, and innovative analytical/bioinformatics tools/methods, with potential to advance crop and livestock breeding programs.ROOT-SOIL-MICROBIOME AGROECOSYSTEMS: Targeted breeding and engineering of essential root biology and associated microbiome traits directed to enhance crop performance under sub-optimal soil abiotic and/or biotic conditions.
投稿、转载信息发布及合作等事宜请联系010-82109925/82109903
官方唯一投稿系统:http://www.abiotech.net
长按关注:aBIOTECH