河南大学赵建辉副教授等:基于RIME-CNN-SVR模型的麦田土壤水分反演

学术   2024-11-12 11:41   北京  


《农业工程学报》2024年第40卷第15期刊载了河南大学等单位王然、赵建辉、杨会巾与李宁的论文——“基于RIME-CNN-SVR模型的麦田土壤水分反演”。该研究由国家自然科学基金项目(项目号:42101386)等资助。


引文信息:王然,赵建辉,杨会巾,等基于RIME-CNN-SVR模型的麦田土壤水分反演[J]. 农业工程学报,202440(15)94-102. 

DOI:  10.11975/j.issn.1002-6819.202312157

土壤水分监测对于农业生产和作物产量预估具有重要意义。近年来深度学习技术在土壤水分反演领域得到广泛应用,但大多侧重于模型结构增强和优化,对模型超参数优化研究探索不足。该研究提出了一种基于霜冰优化算法(rime optimization algorithm,RIME)的卷积神经网络(convolutional neural network,CNN)超参数优化模型,结合极化分解技术来校正植被对土壤水分反演精度的影响,以提高冬小麦农田土壤水分反演性能


首先利用RIME优化CNN超参数以构建RIME-CNN模型,然后使RIME-CNN模型对特征参数进行自适应提取和挖掘,之后对这些特征参数进行正则化处理并输入到支持向量回归(support vector regressionSVR)模型,构建RIME-CNN-SVR模型进行土壤水分估算。为验证所建RIME-CNN-SVR模型的有效性,利用合成孔径雷达synthetic aperture radarSAR)数据结合光学遥感数据,在河南省开封市冬小麦农田区进行试验验证和精度分析。


结果表明,该方法在不增加模型结构复杂性和可学习参数的前提下,显著提升了模型的预测性能,决定系数可达0.72,均方根误差为2.78%,平均绝对误差为2.20%。该研究可为农业生产提供一个更为准确、可靠的土壤水分监测手段。

本文由丨《农业工程学报》编辑部丨精编发布

欢迎留言、分享、点赞

转载、投稿、咨询

邮箱:tcsae@tcsae.org

今日推荐


发布征集

欢迎广大作者、读者投稿至我刊公众号,包括但不限于创新科研成果、科技写作技巧、书籍推介、优秀科技工作者介绍、科研团队招聘/招生、行业资讯以及相关活动等农业工程领域信息。

公众号文章投稿邮箱:abe-newmedia@tcsae.org


公众号内回复【关键词】查询/获取更多信息

公众号内回复【2023-0822】收看“中国农业工程学会2023年学术年会(CSAE 2023)全体大会”

公众号内回复2023最美封面为您心中最美封面投出宝贵的一票

公众号内回复2023审稿人查看2023年度杰出、优秀审稿人评选结果

公众号内回复【招聘】加入《农业工程学报》和IJABE编辑部



»» 点击  阅读原文  免费获取全文

农业工程学报
发布《农业工程学报》出版相关信息,及论文题目、摘要、全文的相关链接。
 最新文章