山东理工大学周鹏博士等:土壤湿度对近红外光谱反演剖面有机质精度的影响

学术   2024-11-23 11:42   北京  


《农业工程学报》2024年第40卷第16期刊载了山东理工大学等单位周鹏、孔一诺、郝珊珊、印祥、肖新清与金诚谦的论文——“土壤湿度对近红外光谱反演剖面有机质精度的影响”。该研究由国家自然科学基金青年基金项目(项目号:62305197)等资助。


引文信息:周鹏,孔一诺,郝珊珊,等土壤湿度对近红外光谱反演剖面有机质精度的影响[J]. 农业工程学报,202440(16)113-123. 

DOI:  10.11975/j.issn.1002-6819.202311069

研究目的:

为深入分析土壤湿度对近红外光谱反演剖面土壤有机质(soil organic matter, SOM)精度的影响,该研究依据水分张力这一指标,将土壤划分为风干状态、1.500、0.330、0.100、0.033 MPa和饱和状态6 种湿度水平,在所选16 个地点分别采集深度约150 cm剖面土壤芯柱为研究对象,7种方法对所测剖面土壤光谱吸光度进行光谱预处理,选择较佳的预处理方法。同时,采用连续投影算法(successive projection algorithm, SPA)和竞争性自适应重加权-连续投影算法(competitive adaptive reweighting-successive projection algorithm, CARS-SPA)筛选特征波长。构建基于全谱及特征波长的SOM近红外光谱反演模型,并将其与标准正态变量变化(standard normal variate, SNV)预处理方法相结合。

结果与结论:

结果表明:1)SPA-PLSR模型和CARS-SPA-PLSR模型的精度均优于基于全谱的PLSR模型;2)SNV-SPA-PLSR模型在饱和、风干状态下预测效果更好,而SNV-CARS-SPA-PLSR模型在水分张力分别为0.033、0.100、0.330和1.500 MPa时预测精度更高;3)不同土壤湿度水平近红外光谱“一对一”式预测SOM模型难以满足实际应用,经过对比研究,选用水分张力为1.500 MPa时构建的SNV-CARS-SPA-PLSR模型分别预测6 组土壤湿度水平和混合样本集中SOM取得效果最好。该研究结果对各湿度水平下估算SOM含量有一定的指导作用,并为提高不同土壤湿度水平间剖面SOM近红外光谱反演模型的适用性提供参考。

本文由丨《农业工程学报》编辑部丨精编发布

欢迎留言、分享、点赞

转载、投稿、咨询

邮箱:tcsae@tcsae.org

今日推荐


发布征集

欢迎广大作者、读者投稿至我刊公众号,包括但不限于创新科研成果、科技写作技巧、书籍推介、优秀科技工作者介绍、科研团队招聘/招生、行业资讯以及相关活动等农业工程领域信息。

公众号文章投稿邮箱:abe-newmedia@tcsae.org


公众号内回复【关键词】查询/获取更多信息

公众号内回复【2023-0822】收看“中国农业工程学会2023年学术年会(CSAE 2023)全体大会”

公众号内回复2023最美封面为您心中最美封面投出宝贵的一票

公众号内回复2023审稿人查看2023年度杰出、优秀审稿人评选结果

公众号内回复【招聘】加入《农业工程学报》和IJABE编辑部



»» 点击  阅读原文  免费获取全文

农业工程学报
发布《农业工程学报》出版相关信息,及论文题目、摘要、全文的相关链接。
 最新文章