为什么这两年,“大数据”谈得越来越少了 ...

文摘   2025-01-16 07:30   北京  

在最近做数字化项目的过程中,不管是和客户交流还是看一些项目的技术方案,都发现有一个曾经很火的概念,突然很少出现了。

不错,这个概念就是“大数据”(Big Data)。

大数据这个词曾经引领了数字化转型的第一波潮流,让人们觉得数据中蕴含着大量的宝藏。对于数据来说,the more, the better,几乎成为行业铁律。

暂且不谈那个经典的“啤酒尿布”的例子,光5V这个概念就已经成为千万数字化厂商的坚定价值信条。

于是,很多技术创业项目开始沉迷于对海量数据进行收集和开发,大规模地投入到建设算力中心,建设存储中心,打造监测平台等事项中。

然而,在实践过程中,人们发现“大数”的价值远远没有达到预期的水平,就像互联网出现的早期一样,人们开始满怀期待,但是并不知道如何变现 ...

仅仅追求数据的规模,并不会让人们从中得到更多的“实惠”。

同时,由于数据质量良莠不齐,与业务相关性差,导致“浪淘金”的数据分析模式,浪费了大量的人力物力。

大数据中,蕴含了业务、跨场景的用户商业察,有利于精准决策和业务创新。” 这句话虽然是大数据精神的内核,但是并不好落地。

绝大多数企业,只掌握供应链上的一个环节,很难做到跨域关联。

如果想通过整合厂商的数据资源来开拓新场景,数据服务成本以及和数据服务关联的商务成本,都是不可低估的。

例如,在支付行业,银行交易数据和消费侧数据如果想达到业财合一,需要服务商、商户、支付机构多方协调,业务推进十分困难 ...

因此,大数据的实践思路一般只适合互联网原生企业,因为这些企业更容易从平台侧逐渐辐射到供应链的两端。

从数据量的角度,平台侧数据量更大,在关于数据融合需求的博弈方面,具有更强的话语权。

反之,对于绝大多数企业,都是非平台型企业。要么只负责生产,要么只负责销售。

想要实现跨域的大数据场景,既缺乏专业能力,也缺乏资金方面的有效保障。

当前,还有一种思路是基于开源的大数据来进行“数据场景”强化。这个思路后来验证也行不通,或者说“入产出比”不高。

开源的大数据在数据质量上很低,同时与业务的相关性差,这就意味着单位数据投入产出的业务价值非常有限——数据价值密度低。

尽管在学界一直对于开源大数据的建模和分析比较痴迷,营造了一种开源数据价值含量更高的假象,其主要原因还是在于“拿不到”产业数据。

在这种情况下,更多的传统企业开始反思,应该聚焦于将数据挖深、做透,而不是单纯地追求数据规模的大。

如果大数据不能带来直接有效的价值,那么对于企业来说是负债,而不是资产。

基于上述的这些讨论,并不是说大数据不重要,而是说大数据并不适合每一个数字化企业对数据资产的投资。

数据的获取渠道,已有数据和所需数据的比例,数据的治理效率和开发效率,都是应该慎重考虑的决策门槛。

与其盲目拓展新的数据,去探索难以得到验证的未知规律,还不如在现有的业务架构中把现有的数据资源规整、加工、治理,先满足当下的业务需求。

换句话说,大数据是一个数字化企业发展到比较高级阶段的任务,对于数字化基础还不够强的传统企业或中小企业,还是应该以传统数据分析任务为中心开展数据方面工作。

希望关注数字化转型的企业主们能够与我们交流,一起学习和讨论关于数字化的想法!

数易达科技长期关注数据价值开发和应用场景构建的前沿AI技术,希望通过大数据工具和平台帮助企业快速建立成熟的数据资产管理体系(了解更多)


往期精彩推荐

为什么很多行业巨头,至今不愿做数字化 ...

为什么这两年,“大数据”谈得越来越少了 ...

数字化下半场,建“中台”还重要吗?

数字化转型中的重要管理思想!

数字化转型,为什么一定要谈“架构”?

后数字化时代,数据部门的窘境渐显!

30条金句,说透数字化转型真相!

数字化咨询,正在走向“廉价化” ...

数字化,“抓住”这几点就够了 ...

如何理性看待,中小企业数字化转型!

搞懂“数据要素”,需要了解这些事儿 ...

大型传统企业数字化转型难点与策略洞悉!

从“数据科学”视角,看懂数字化转型

终于搞懂!“概念模型”、“逻辑模型”,和“物理模型”之间的区别 ...

公众号推送规则变了,如果您想及时收到推送,麻烦右下角点个在看或把本号置顶!提供数字化咨询和技术工具,有意立即添加留言!点击这里 查看服务

(Bill Liu | 数字化落地)

大话数字化转型
面向企业数字化转型和智能信息技术应用,分享前沿的数据分析技术、行业发展动态,以及数字管理经验。接受行业业务咨询和教育培训。
 最新文章