PCIe EtherCAT实时运动控制卡PCIE464的安装与调试

科技   科技   2024-06-12 11:50   广东  

点击上方正运动小助手,随时关注新动态!



本文导读


今天,正运动小助手给大家分享PCIE464的驱动安装以及在RTSys上的调试与监控。在正式学习之前,我们先了解一下正运动技术的运动控制卡PCIE464。





硬件介绍

PCIE464运动控制卡是正运动推出的一款EtherCAT总线+脉冲型、PCIE接口式的运动控制卡,可选6-64轴运动控制,支持多路高速数字输入输出,可轻松实现多轴同步控制和高速数据传输。

PCIE464运动控制卡适合于多轴点位运动、插补运动、轨迹规划、手轮控制、编码器位置检测、IO控制、位置锁存等功能的应用。
PCIE464运动控制卡适用于3C电子加工、检测设备、半导体设备、SMT加工、激光加工、光通讯设备、锂电及光伏设备、以及非标自动化设备等高速高精应用场合。

PCIE4系列控制卡的应用程序可以使用VC,VB,VS,C++,C#等软件开发,程序运行时需要动态库zmotion.dll,调试时可以将RTSys软件同时连接控制器,从而方便调试、方便观察。

PCIE464产品介绍




接口介绍


PCIE464控制卡安装
1.关闭计算机电源。
2.打开计算机机箱,选择一条空闲的PCIE卡槽,用螺丝刀卸下相应的挡板条。
3.将运动控制卡插入该槽,拧紧挡板条上的固定螺丝。
卡槽接口按PCIE*1标准的卡设计,兼容PCIE*1到PCIE*16。





PCIE464控制卡的驱动安装


方法一:自动安装

使用驱动目录中自带的安装向导软件dpinst_amd64.exe自动安装,具体操作按软件指南。PCIE签名驱动安装包可从正运动官网获取。

下载地址:http://www.zmotion.com.cn/download_list_6.html

1.用驱动目录中自带的安装向导软件dpinst_amd64.exe自动安装。

2.当硬件安装好,启动计算机后,Windows将自动检测到运动控制卡,并启动“找到新的硬件向导”,如下图所示:
3.点击“下一步”,如果出现杀毒软件或安全管家风险提示,一律允许,或安装开始之前退出杀毒软件和安全管家,否则会安装不成功。
4.弹出下图界面。点击“完成”则安装完成。



方法二:手动安装

1.打开设备管理器菜单选择其他设备中的PCI设备。

2.找到PCI设备,右击选择“更新驱动程序”。

3.选择“浏览我的电脑以查找驱动程序”。

4.点击“浏览”,选择对应Windows版本及位数的driver文件夹。

5.点击“下一步”。

6.等待安装完成,点击关闭。

7.在设备管理器中有ZMotion Pci Controller就是安装成功。





EtherCAT总线扩展接线

当PCIE464本身资源不够用时,支持连接扩展模块对资源进行扩展。

连接扩展模块可通过EtherCAT总线连接EIO扩展模块实现资源扩展。可扩展数字量IO、脉冲轴等。如下图所示。





RTSys进行调试与监控

成功安装驱动后,可以在RTSys软件上进行运动调试与监控。首先要连接控制器,RTSys支持串口、以太网口以及PCI/Local连接到控制器。

PCIE卡选择连接方式为PCI/Local:PCI卡号。

一、控制器连接

打开RTSys软件,点击菜单栏的控制器选项,选择连接,点击连接控制器并且在弹出窗口中现在PCI连接,驱动安装成功的情况下,会将卡显示出来,点击连接即可。


二、轴参数界面

连接成功后,在命令与输出窗口会有相关信息打印提示,同时会将轴参数实时读取显示在轴参数界面中,我们可以根据实际情况在轴参数界面对轴参数进行设置,将轴类型、脉冲当量、速度、加速度和减速度设置完成。

可变参数可以双击后直接修改,只读参数不支持修改,参数指令含义可查看RTBasic帮助。该窗口还支持进行“轴选择”和“参数选择”。

轴选择:用户自由选择需要监控的轴号显示在窗口。勾选轴号点击“确定”即可。

参数选择:可自定义选择需要监控显示的轴参数,选择监控的参数不宜过多,否则会影响刷新效率。


三、手动运动界面
将轴参数均设置好后,点击左上角工具,选择“手动运动”,打开手动运动视图后,对轴进行运动调试,观察实际情况是否符合要求。在调试观察根据情况对参数进行调整,也可以将我们的示波器软件打开,抓取对应运动波形。

“手动运动”用于通过手动操作电机。可通过菜单栏“工具”→“手动运动”打开。

操作方法:连接好控制器及电机,打开该工具。可在左侧实时输入/修改轴相关的参数,选择轴号(可在下拉列表中选择),设置好相关参数后,按住“左转”/“右转”按钮不放,电机持续左或右运动,松开按钮停止运动。

“指令位置”显示当前DPOS运动距离(单位为units)。填写“距离”参数,点击“运动”,勾选“绝对”时,电机运动到绝对距离参数位置;不勾选“绝对”时,点击“运动”,电机按相对距离参数运动。

“反馈位置”/“运动状态”/“轴状态”用于监测反馈轴运动状态,这三个参数均为只读,不可修改。按下“停止”按钮轴运动立刻停止。


四、IO操作界面

轴参数调试完成并设置成功后,我们可以对输入输出口进行测试,观察信号是否可以正常触发,可通过IO选择需要观察的输入输出口,可以实时监控IO状态。有信号输入显示绿色,无信号输入显示灰色。


五、寄存器界面

用于批量查看控制器寄存器的数值,可以选择查看不同类型的寄存器(支持PLC功能的控制器才支持此功能)需要对寄存器功能进行测试,可以使用该窗口。可通过菜单栏“工具”→“寄存器”打开。

使用方法:选择需要读取的寄存器类型、起始编号、个数后,点击“读取”即可在窗口显示出数据。勾选自动刷新功能便于自动实时采集寄存器值变化并显示出来,否则需要再次点击读取才能获取的寄存器的值变化情况。
注意:读取个数不要超出寄存器范围,否则会提示错误。
“导入”/“导出”:可快速上传/下载寄存器数据。导出数据方便客户把自己关注的部分寄存器导出到文本保存。导入数据方便客户把关注部分的已保存的数据直接更改到控制器内部。


六、模拟量AD/DA界面
需要对模拟量输入输出进行测试操作方法:连接上支持模拟量输入/输出的控制器,打开“AD/DA”工具窗口,点击“重新读取”即可读取到当前控制器的模拟量值。
通道号:显示当前已连接的控制器的AD/DA对应的输入输出口。

大小:显示每个通道口的AD/DA大小,以百分比显示。

刻度值:显示已输入或输出的模拟量刻度值。(DA的“刻度值”和“电压或电流值”支持修改。)

电压或电流值:显示已选的“电压或电流范围”内的值。

最大刻度值:取决于控制器模拟量的分辨率为12位还是16位。具体可查看对应的用户手册。

模拟量输入分辨率为12位,对应的刻度值范围为0~4095。

模拟量输入分辨率为16位,对应的刻度值范围为0~65535。

电压或电流范围:根据需求及控制器所支持的范围进行量程选择。

教学视频

本次,正运动技术PCIe EtherCAT实时运动控制卡PCIE464的安装与调试,就分享到这里。

更多精彩内容请关注“正运动小助手”公众号,需要相关开发环境与例程代码,请咨询正运动技术销售工程师:400-089-8936。

本文由正运动技术原创,欢迎大家转载,共同学习,一起提高中国智能制造水平。文章版权归正运动技术所有,如有转载请注明文章来源。

回顾往期内容

开奖啦!参与《运动控制系统应用与实践》赠书活动的粉丝们看这里

送书福利!全自主IDE的《运动控制系统应用与实践》

PCIe EtherCAT实时运动控制卡的DXF图形的CAD导图与多条运动指令的快速加工

EtherCAT运动控制器在UVW对位平台中的应用

EtherCAT运动控制器Delta机械手应用

EtherCAT运动控制器的MATLAB开发


运动控制器/运动控制卡配套ZCAN总线ZIO模块的使用

运动控制卡/运动控制器的ZCAN总线ZMIO310扩展模块使用

EtherCAT运动控制器在ROS上的应用(下)

EtherCAT运动控制器在ROS上的应用(上)


皮带同步跟随:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十四)

自定义电子凸轮曲线的运动:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十三)

连续轨迹加工和速度前瞻:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十二)

PT/PVT运动模式介绍:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十一)

项目工程下载与XML配置文件下载:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十)

EtherCAT驱动器回零与控制器回零:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(九)

二维/三维的多轴PSO视觉飞拍与精准输出:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(八)

单轴PSO视觉飞拍与精准输出:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(七)

硬件位置比较输出和编码器锁存:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(六)

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(五):通过RTSys进行调试与诊断

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(四):板载IO与总线扩展IO的编码器与脉冲配置的应用

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(三):EtherCAT总线CSP,CSV,CST模式切换

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(二):EtherCAT总线初始化

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(一):驱动安装与建立连接

全国产EtherCAT运动控制边缘控制器(六):RtBasic文件下载与连续轨迹加工的Python+Qt开发

全国产EtherCAT运动控制边缘控制器(五):IO配置与回零运动的Python+Qt开发

全国产EtherCAT运动控制边缘控制器(四):轴参数配置与单轴运动PC上位机C++控制

全国产EtherCAT运动控制边缘控制器(三):外设读写与RTSys开发诊断

全国产EtherCAT运动控制边缘控制器(二):统一的上位机API接口

全国产EtherCAT运动控制边缘控制器(一):ZMC432H硬件接口

高柔SS加减速曲线在锂电池焊接中的应用

EtherCAT和Ethernet的不同点有哪些, 通信周期又是什么意思?

工业以太网时代,该如何选择总线运动控制器?

正运动技术运动控制器如何快速实现单轴/多轴同步跟随功能?


EtherCAT运动控制器Delta机械手应用

EtherCAT运动控制器的MATLAB开发

EtherCAT运动控制器在数控加工手轮随动中的应用

EtherCAT运动控制器在数控加工手轮随动中的应用之C++

EtherCAT运动控制器在LabVIEW中的运动控制与实时数据采集

运动控制器PSO视觉飞拍与精准输出的C++开发(三):二维/三维/多轴PSO输出

运动控制器PSO视觉飞拍与精准输出的C++开发(二):多轴PSO等距/周期输出

运动控制器PSO视觉飞拍与精准输出的C++开发(一):单轴PSO

运动控制器八通道PSO的视觉飞拍与精准输出

Windows实时运动控制软核(七):LOCAL高速接口测试之Labview

Windows实时运动控制软核(六):LOCAL高速接口测试之Matlab

Windows实时运动控制软核(五):LOCAL高速接口测试之VC6.0

Windows实时运动控制软核(四):LOCAL高速接口测试之VB.NET

Windows实时运动控制软核(三):LOCAL高速接口测试之C++

Windows实时运动控制软核(二):LOCAL高速接口测试之Qt

Windows实时运动控制软核(一):LOCAL高速接口测试之C#

开放式激光振镜运动控制器:C++ 快速调用图形库应用

开放式激光振镜运动控制器:C++振镜矫正方法与实现

开放式激光振镜运动控制器:C++快速开发


开放式激光振镜运动控制器(五):ZMC408SCAN 光纤激光器的能量控制

开放式激光振镜运动控制器(四):ZMC408SCAN振镜控制光纤激光器加工

开放式激光振镜运动控制器(三):ZMC408SCAN轴控光纤激光器加工

开放式激光振镜运动控制器(二):ZMC408SCAN激光接口与控制

开放式激光振镜运动控制器(一):ZMC408SCAN接口与功能


运动控制器PSO位置同步输出(三):高精度等间距二维三维PSO输出

运动控制器PSO位置同步输出(二):PSO模式详解

运动控制器PSO位置同步输出(一):硬件平台与PSO指令简介


经济型EtherCAT运动控制器(十):EtherCAT总线快速入门

经济型EtherCAT运动控制器(九):示波器使

经济型EtherCAT运动控制器(八):轴参数与运动指令

经济型EtherCAT运动控制器(七):运动缓冲

经济型EtherCAT运动控制器(六):数据储存

经济型EtherCAT运动控制器(五):多任务运行

经济型EtherCAT运动控制器(四):ModbusRTU或ModbusTcp与触摸屏通讯

经济型EtherCAT运动控制器(三):PLC实现多轴直线插补与电子凸轮

经济型EtherCAT运动控制器(二):ZBasic实现多轴直线插补运动

经济型EtherCAT运动控制器(一):功能简介与应用场景


运动控制+机器视觉Demo软件框架(三):视觉纠偏+连续插补的配方编辑

运动控制+机器视觉Demo软件框架(二):移动标定和形状匹配

运动控制+机器视觉Demo软件框架(一):机械参数和配方文件的管理

运动控制+机器视觉Demo软件框架系统概述


开放式激光振镜+运动控制器(六):双振镜运动

开放式激光振镜+运动控制器(五):ZMC408SCAN控制器硬件介绍

开放式激光振镜+运动控制器(四):PSO位置同步输出在激光振镜加工中的应用

开放式激光振镜+运动控制器(三):振镜矫正

开放式激光振镜+运动控制器(二):振镜填充

开放式激光振镜+运动控制器(一):硬件接口


EtherCAT轴扩展模块EIO16084在运动控制系统中的应用
EtherCAT运动控制器中脉冲接口的快速调试与诊断
EtherCAT运动控制器之ZMIO300模块的使用
EtherCAT运动控制器的PLC编程(四) 电子凸轮
EtherCAT运动控制器的PLC编程(三) 电子齿轮
EtherCAT运动控制器的PLC编程(二) 圆弧插补
EtherCAT运动控制器的PLC编程(一) 直线插补


快速入门 | 篇二十一:运动控制器ZHMI组态编程简介一

快速入门 | 篇二十一:正运动技术运动控制器自定义通讯

快速入门 | 篇二十:正运动技术运动控制器MODBUS通讯

快速入门 | 篇十九:正运动技术运动控制器多轴同步与电子凸轮指令简介


快速入门 | 篇十八:正运动技术脉冲型运动控制器的使用

快速入门 | 篇十七:运动控制器多轴插补运动指令的使用

快速入门 | 篇十六:正运动控制器EtherCAT总线快速入门

快速入门 | 篇十五:运动控制器运动缓冲简介

快速入门 | 篇十四:运动控制器基础轴参数与基础运动控制指令

快速入门 | 篇十三:正运动技术运动控制器ZDevelop 编程软件的使用


快速入门 | 篇十二:正运动技术运动控制器U盘接口的使用

快速入门 | 篇十一:正运动技术运动控制器中断的应用

快速入门 | 篇十:运动控制器多任务运行特点

快速入门 | 篇九:如何进行运动控制器示波器的应用?

快速入门 | 篇八:如何进行运动控制器EtherCAT总线的基础使用?

快速入门 | 篇七:如何进行运动控制器ZCAN总线扩展模块的使用?


快速入门 | 篇六:如何进行运动控制器数据与存储的应用?

快速入门 | 篇五:如何进行运动控制器输入/输出IO的应用?

快速入门 | 篇四:如何进行运动控制器与触摸屏通讯?

快速入门 | 篇三:如何进行运动控制器ZPLC程序开发?

快速入门 | 篇二:如何进行运动控制器ZBasic程序开发?

快速入门 | 篇一:如何进行运动控制器固件升级?


EtherCAT与RTEX驱动器轴回零的配置与实现

G代码在运动控制器上的应用

运动控制器的自定义G代码编程应用

离线仿真调试,加快项目进度!

8轴EtherCAT轴扩展模块EIO24088的使用

运动控制器之追剪应用Demo

运动控制器激光振镜控制
运动控制器轴回零的配置与实现

运动控制器位置锁存功能的应用

ZMC运动控制器SCARA机械手应用快速入门

运动控制器RTEX总线使用入门

正运动技术CAD导图软件配合控制器的使用方法

EtherCAT总线运动控制器应用进阶一


EtherCAT运动控制卡开发教程之Qt(下):SCARA机械手正反解的建立

EtherCAT运动控制卡开发教程之Qt(中):小线段连续轨迹加工、暂停与继续

EtherCAT运动控制卡开发教程之Qt(上):开发环境配置与简单运动控制应用


EtherCAT运动控制卡开发教程之python

EtherCAT运动控制卡的SCARA等机器人指令的应用

EtherCAT运动控制卡的PWM与模拟量输出和运动速度同步

EtherCAT运动控制卡硬件比较输出以及编码器锁存

EtherCAT运动控制卡IO动作与运动控制的同步

EtherCAT运动控制卡实时程序的运行和读写控制


EtherCAT运动控制卡的运动暂停、恢复与系统安全设置

EtherCAT运动控制卡小线段前瞻的连续插补运动

EtherCAT运动控制卡的多轴插补运动和手轮运动

EtherCAT运动控制卡的辅助调试工具与方法介绍

EtherCAT运动控制卡的总线轴参数设置和轴运动

EtherCAT运动控制卡的硬件接线与C#的硬件外设读写与回零运动

EtherCAT运动控制卡的硬件接线与C#的单轴运动控制


简单易用的运动控制卡(十六):螺距补偿和反向间隙补偿

简单易用的运动控制卡(十五):PC启停控制器的实时程序

简单易用的运动控制卡(十四):PWM、模拟量输出与运动控制的同步

简单易用的运动控制卡(十三):IO动作与运动控制的同步

简单易用的运动控制卡(十二):运动控制系统的安全设置

简单易用的运动控制卡(十一):运动的暂停恢复和速度倍率设置


简单易用的运动控制卡(十):连续插补和小线段前瞻

简单易用的运动控制卡(九):圆弧插补和螺旋插补

简单易用的运动控制卡(八):直线插补和手轮运动

简单易用的运动控制卡(七):一次性加载多条连续小线段数据

简单易用的运动控制卡(六):Basic文件下载和连续轨迹加工


简单易用的运动控制卡(五):IO配置与回零运动

简单易用的运动控制卡(四):函数库的封装

简单易用的运动控制卡(三):轴参数配置和单轴运动控制

简单易用的运动控制卡(二):外设读写与ZDevelop诊断

简单易用的运动控制卡(一):硬件接线和上位机开发


运动控制卡在ROS上的应用(下)

运动控制卡在ROS上的应用(上)


EtherCAT运动控制卡和LabVIEW构建智能装备(五)

EtherCAT运动控制卡和LabVIEW构建智能装备(四)

EtherCAT运动控制卡和LabVIEW构建智能装备(三)

EtherCAT运动控制卡和LabVIEW构建智能装备(二)

EtherCAT运动控制卡和LabVIEW构建智能装备(一)

EtherCAT运动控制卡在LabVIEW中的运动控制与数据采集


运动控制卡应用开发教程之MATLAB

运动控制卡应用开发教程之C++

运动控制卡应用开发教程之Python

运动控制卡应用开发教程之C#

运动控制卡应用开发教程之Linux

运动控制卡应用开发教程之VB.NET


运动控制卡应用开发教程之VB6.0

运动控制卡应用开发教程之VC6.0

运动控制卡应用开发教程之使用Qt

运动控制卡应用开发教程之LabVIEW

运动控制卡应用开发教程之激光振镜控制

运动控制卡应用开发教程之硬件比较输出


关于正运动技术



深圳市正运动技术有限公司成立于2013年,专注于纯国产运动控制技术研究和通用运动控制软硬件平台和产品的研发,是国家级高新技术和专精特新“小巨人”企业。

正运动技术汇集了来自华为、中兴等公司的优秀人才。力求创新,目前公司拥有专利、著作权等知识产权五十余项。在坚持自主创新的同时,积极联合各大高校和科研院所协同运动控制基础技术的研究,是国内工控领域发展最快的企业之一,也是国内少有、完整掌握运动控制核心技术和实时工控软件平台技术的企业。

正运动技术除本部研发中心外,设有中山、武汉、上海三个研发分部。为更好地服务客户,本部之外设有苏州、东莞两个区域性服务中心,设有佛山、厦门、青岛、西安、武汉、成都、天津、郑州等销售和技术服务机构。

经过众多合作伙伴多年的开发应用,正运动技术的产品广泛地应用于3C电子、半导体、新能源、机器人、包装印刷、纺织服装、激光加工、医疗制药、数控机床、传统加工等领域。

正运动小助手
正运动小助手是正运动技术旗下技术资料平台,可第一时间发布最新产品技术文档,为您奉上最全面的运动控制产品基础知识介绍、使用注意事项及操作步骤指引等资料。
 最新文章