开放式激光振镜运动控制器在Ubuntu+Qt下的文本标刻

科技   科技   2024-09-10 07:00   广东  

点击上方正运动小助手,随时关注新动态!


上节课程我们讲述了如何通过Ubuntu+Qt进行振镜校正(详情点击→开放式激光振镜运动控制器在Ubuntu+Qt下的激光振镜校正),本节文本标刻是在振镜校正的前提下实现的。

在正式学习之前,我们先了解一下正运动技术的ZMC408SCAN-V22运动控制器,ZMC408SCAN-V22支持在Linux环境进行开发使用。



01
ZMC408SCAN-V22硬件介绍

ZMC408SCAN-V22是正运动技术推出的高性能双振镜运动控制器,集成了2个百兆以太网口,支持EtherCAT、EtherNET、CAN、RS232、RS485、24路通用数字输入、20路通用数字输出、2路通用模拟量输出、2路通用模拟量输入、4个本地差分脉冲轴接口、1个MPG手轮编码器接口、2个带反馈振镜接口、1个LASER激光专用接口、1个FIBER激光器接口。开放式系统框图如下所示:

ZMC408SCAN-V22总线控制器支持EtherCAT总线连接,支持最快500μs的刷新周期,支持最多达16轴运动控制,支持直线插补、任意圆弧插补、空间圆弧、螺旋插补、电子凸轮、电子齿轮、同步跟随、虚拟轴设置等;采用优化的网络通讯协议可以实现实时的运动控制。

ZMC408SCAN-V22支持ETHERNET、EtherCAT、USB、CAN、RS485、RS232等通讯接口,通过CAN、EtherCAT总线可以连接各个扩展模块,从而扩展数字量、模拟量或运动轴。可以在windows,linux,Mac,Android,wince各种操作系统下开发,提供vc,c#,vb.net,labview等各种环境的dll库,如下图。上位机软件编程参考《ZMotion PC函数库编程手册》。




02
Ubuntu+Qt进行文本标刻项目的开发

(一)新建Qt项目并添加函数库
1.在Qt Creator菜单选择“文件”→“新建文件或项目...”,打开创建项目向导。选择Application项目集,创建Qt Widgets Application项目,设置项目名称和保存位置。

2.导入厂家提供的相关函数库及头文件。

(1)将zmotion.h和zmcaux.h、zmcaux.cpp以及libzmotion.so库复制到新建的项目文件夹中。

(2)在Qt Creator选择新建的Qt项目右击选择“添加库...”→“外部库”点击下一步,将刚才复制到项目文件夹上的libzmotion.so库文件导入到项目中。

(3)在Qt Creator下右击新建的Qt项目,选择“添加现有文件...”,将之前复制到项目文件下的libzmotion.so、zmotion.h、zmcaux.cpp以及zmcaux.h添加到项目中。

(4)函数库添加成功后,打开pro文件可以看到相关的函数库和头文件信息。此时已经将例程需要用到的函数库和头文件都加入到项目中了,接下来开始实现例程。

(二)安装Linux下字体引擎库

1.FreeType字体引擎库的安装

字体引擎库有很多,在例程中我们选择使用FreeType字体引擎库来进行字符轮廓解析。首先我们需要在Ubuntu环境中下载FreeType库,在终端命令行中输入sudo apt-get update和sudo apt-get install libfreetype6 libfreetype6-dev命令在线安装FreeType库,如下图所示:

安装完成后只需要在使用时引入#include <ft2build.h>头文件即可。实现文本标刻的例程必须安装字体引擎库来解析字符,否则无法得到字符的关键点坐标,就无法完成标刻和绘制。

2.设置字体文件

FreeType库没有扫描系统字体库文件的功能,在进行轮廓解析时,需要将字体文件传入。所以在正式开始例程前,需要把提前下载好的字体文件放在项目文件下,方便解析字体时直接使用。在当前项目下新建一个字体文件夹,将提前下载好的字体复制到文件夹中,如下图所示:



03
文本标刻流程以及相关函数介绍

1.文本绘制流程

文本的处理首先是需要将文本轮廓进行解析,对轮廓信息进行分解,轮廓信息中包含轮廓的类型,文本轮廓分为线段、二次贝塞尔曲线、三次贝塞尔曲线,对于贝塞尔曲线类型需要将曲线分解为小线段进行处理,可以控制分解的精度,将所有的轮廓线处理完即代表已经完成当前字符的绘制。

2.相关函数接口介绍
(1)加载和初始化字体文件

函数原型

FT_Error FT_New_Face(FT_Library library,const char* filepathname,FT_Long face_index,FT_Face *aface )

功能

加载和初始化字体文件。

输入参数

参数名

描述

library

FT_Library结构的指针用于初始化使用资源。

filepathname

字体文件的路径和名称。

face_index

字体文件中可以包含多个字体用于选择字体,0代表第一个字体。

aface

用于接收加载和初始化后的字体对象

返回值

返回0代表初始化成功。

(2)计算贝塞尔曲线的二次项系数

贝塞尔曲线是通过控制点来定义的一种曲线形状,贝塞尔曲线的一个关键性质是它是由一组控制点和二项式基函数组合而成的。二项式系数确定了每个控制点在贝塞尔曲线中的权重。在计算贝塞尔曲线上的点时,每个控制点的贡献由其对应的二项式系数乘以相应的基函数得出。贝塞尔曲线通过调整控制点的位置和二项式系数来实现各种复杂的曲线形状。

函数原型

int Bezier_Binomial(int n, int i)

功能

计算贝塞尔曲线的二次项系数。

输入参数

参数名

描述

n

贝塞尔曲线的阶数

i

当前要计算的项数。

返回值

返回贝塞尔曲线的二次项系数

(3)获取贝塞尔曲线的点坐标

函数原型

ZPointF Bezier_CalCurveTPoint(const ZPointF *pCtrlPoints, int iCtrlNum, float t)

功能

计算贝塞尔曲线上的点坐标

输入参数

参数名

描述

pCtrlPoints

贝塞尔曲线的控制点坐标。

iCtrlNum

贝塞尔曲线的阶数。

t

用于确定点的位置(0对应起点,1对应终点)。

返回值

返回贝塞尔曲线的点坐标

(4)三次文件初始化

函数原型

void LaserScan_z3p_Init(QString &strFile3)

功能

对三次文件字符串初始化。

输入参数

参数名

描述

strFile3

三次文件字符串的地址。

返回值

void。

(5)生成空移字符串

函数原型

void LaserScan_z3p_EmptyMove(QString &strFile3,double x,double y,double jumpSpeed,double jumpDelay)

功能

生成空移的三次文件字符串。

输入参数

参数名

描述

strFile3

三次文件字符串的地址。

x

空移点的x坐标。

y

空移点的y坐标。

jumpSpeed

空移点的跳转速度。

jumpDelay

空移点的跳转延时(us)

返回值

void。

(6)生成开光字符串

函数原型

void LaserScan_z3p_OpenLight(QString &strFile3,int op,double openDelay,double markSpeed)

功能

生成开光的三次文件字符串。

输入参数

参数名

描述

strFile3

三次文件字符串的地址。

op

激光开关的op输出口号。

openDelay

开光延时(us)。

markSpeed

设置的标刻速度。

返回值

void。

(7)生成关光字符串

函数原型

void LaserScan_z3p_CloseLight(QString &strFile3, int op, double closeDelay)

功能

生成关光的三次文件字符串。

输入参数

参数名

描述

strFile3

三次文件字符串的地址。

op

激光开关的op输出口号。

closeDelay

关光延时(us)。

返回值

void。

(8)生成标刻点字符串

函数原型

void LaserScan_z3p_Mark(QString &strFile3, double corDelay,ZPointF *PointData,int size)

功能

生成标刻点的三次文件字符串。

输入参数

参数名

描述

strFile3

三次文件字符串的地址。

corDelay

拐角延时(us)

PointData

标刻点数组。

size

标刻点的数量。

返回值

void。

(9)下载三次文件

函数原型

int32 __stdcall ZMC_DownMem3File(ZMC_HANDLE handle, const char* pbuffer, uint32 buffsize, const char* pfilenameinControl)

功能

将生成的三次文件字符串下载到控制器中。

输入参数

参数名

描述

handle

当前连接的控制器句柄

pbuffer

三次文件字符串。

buffsize

字符串的长度。

pfilenameinControl

生成三次文件的文件名。

返回值

成功返回值为0。

(10)通用命令执行接口

函数原型

int32 __stdcall ZMC_Execute(ZMC_HANDLE handle, const char* pszCommand, uint32 uimswait, char* psResponse, uint32 uiResponseLength)

功能

通过命令字符串直接操作控制器,执行对应的指令。

输入参数

参数名

描述

handle

连接的控制器句柄。

pszCommand

在线命令字符串。

uimswait

最长等待ms时间。

psResponse

接收控制器执行结果输出。

uiResponseLength

接收执行结果输出的大小。

返回值

成功返回值为0,非0详见错误码说明。



04
文本标刻的实现例程

文本标刻例程首先需要获取到文本数据,获取到外部输入文本后,将文本进行单个解析,生成字符轮廓数据,接下来的处理就是对轮廓数据进行转换,将贝塞尔曲线数据全部转换为小线段来处理,最后将小线段相连接,生成三次文件字符串,下载到控制器中,执行标刻命令即可完成文本的标刻。

(1)将文本解析为轮廓数据,FreeType库解析文本时需要对字符进行单个处理,将每个字符都进行解析轮廓。

//初始化轮廓数据FT_Init_FreeType(&library);const char* fontFilePath = gainFontFilePath(text_data.type);FT_New_Face(library, fontFilePath, 0, &face);// 获取字符的索引FT_UInt glyphIndex = FT_Get_Char_Index(face, charCode);// 加载字符的轮廓信息FT_Int32 loadFlags = FT_LOAD_DEFAULT | FT_LOAD_NO_BITMAP;FT_Load_Glyph(face, glyphIndex, loadFlags);// 获取字形槽FT_GlyphSlot glyphSlot = face->glyph;// 获取字形的轮廓信息FT_Outline* outline = &glyphSlot->outline;

(2)将轮廓数据转换为小线段生成三次文件字符串,对于线段数据可以直接通过坐标位置生成三次文件字符串,对于贝塞尔曲线数据,需要循环遍历,将所有曲线数据转换为小线段数据,最后生成三次文件字符串。

//将所有轮廓数据遍历,对不同类型的数据进行不同的处理for(int n=0;n < outline->n_contours;n++){    LaserScan_z3p_EmptyMove(strFile3,startX,startY,markPara.JumpSpeed,corrJumpDelay);//空移到起点    LaserScan_z3p_OpenLight(strFile3,markPara.Io_value.emit_io,markPara.OpenDelay,markPara.MarkSpeed);//开光    tag = FT_CURVE_TAG(tags[0]);    //判断当前轮廓数据的类型    switch(tag)    {        case FT_CURVE_TAG_ON:   //线段        {           LaserScan_z3p_Mark(strFile3,markPara.CorDelay,line,2);        }        case FT_CURVE_TAG_CONIC:    //两次贝塞尔曲线        {            ZPointF *pointData = new ZPointF[myVector.size()];            for (unsigned long i = 0; i <= myVector.size() - 1; ++i)            {                pointData[i] = myVector[i];             }            LaserScan_z3p_Mark(strFile3,markPara.CorDelay,pointData,myVector.size());//标刻        }        default:  //三次贝塞尔曲线        {            ZPointF *pointData = new ZPointF[myVector.size()];            for (unsigned long i = 0; i <= myVector.size() - 1; ++i)            {                pointData[i] = myVector[i];             }            LaserScan_z3p_Mark(strFile3,markPara.CorDelay,pointData,myVector.size());//标刻        }    }    LaserScan_z3p_CloseLight(strFile3,markPara.Io_value.emit_io,markPara.CloseDelay,corrJumpDelay);//关光}

(3)使用Free Type库解析生成的轮廓坐标点,是按照内部矩阵的像素位置决定,暂时没有相关的函数来调整起始点坐标位置,但是在使用文本标刻时,必须要确定标刻的起点位置,所以在例程中的实现方法是将解析出的的坐标位置进行比较,得到最小的X和Y坐标,将所有的轮廓坐标偏移最小坐标位置,保证起始点是在原点位置开始,后续可以通过更改起点位置来确定相对位置。

(4)三次文件字符串追加完成后,将三次文件下载到控制器中,进行文本标刻。
//初始化三次文件字符串LaserScan_z3p_Init();//生成文本标刻字符串Z3p_process();//回原点,打开急停信号,关闭激光器使能LaserScan_z3p_EmptyMove(strFile3,0,0,markPara.JumpSpeed,corrJumpDelay);//空移到原点//将三次文件字符串下载到控制器中ZMC_DownMem3File(g_handle,strFile3.toLatin1().data(),strFile3.length(),"Zmc_text.z3p");QString filePath = "Zmc_text.z3p";QFile file(filePath);//在当前项目下生成三次文件if (file.open(QIODevice::WriteOnly | QIODevice::Text)){    QTextStream stream(&file);    stream << strFile3;    file.close();    QMessageBox::warning(this,"提示","3次文件生成成功!");}


05
文本标刻的实现效果

1.建立控制器连接,设置激光器参数和工艺参数。

2.输入需要标刻的文本,可以根据需要设置相关的文字属性,下面是输入文字通过QPaint绘制的文本。

3.可以更改字体,文本开始位置以及设置倾斜属性,下面是设置后的效果。
4.点击生成三次文件,选择标刻图形,下图是通过示波器抓取的标刻数据。

5.文本标刻效果演示。

完整代码获取地址

本次,正运动技术开放式激光振镜运动控制器在Ubuntu+Qt下的文本标刻,就分享到这里。

更多精彩内容请关注“正运动小助手”公众号,需要相关开发环境与例程代码,请咨询正运动技术销售工程师:400-089-8936。

本文由正运动技术原创,欢迎大家转载,共同学习,一起提高中国智能制造水平。文章版权归正运动技术所有,如有转载请注明文章来源。

回顾往期内容

开奖啦!参与《运动控制系统应用与实践》赠书活动的粉丝们看这里

送书福利!全自主IDE的《运动控制系统应用与实践》

开放式激光振镜运动控制器在Ubuntu+Qt下的激光振镜校正

EtherCAT运动控制器上位机开发之Python+Qt(三):PDO配置与SDO读写

EtherCAT运动控制器上位机开发之Python+Qt(二):回零

EtherCAT运动控制器上位机开发之Python+Qt(一):链接与单轴运动

C#之Delta并联机械手的视觉同步分拣

C#之Delta并联机械手的视觉相机标定与形状匹配

C#之Delta并联机械手正逆解的建立和手动运动

PCIe EtherCAT实时运动控制卡PCIE464的安装与调试

PCIe EtherCAT实时运动控制卡PCIE464的IO与编码器读写应用

PCIe EtherCAT实时运动控制卡的DXF图形的CAD导图与多条运动指令的快速加工

VPLC7机器视觉运动控制一体机在三轴SCARA机械手螺丝锁付的应用

VPLC系列机器视觉运动控制一体机在五轴联动点胶上的应用

基于VPLC7机器视觉运动控制一体机的UVW视觉对位解决方案

基于VPLC711的曲面外观检测XYR运动控制解决方案

基于VPLC532E开放式数控系统在五轴义齿机上的应用

机器视觉运动控制快组态软件RTFuse在XYZ三轴运动平台的应用方案

机器视觉运动控制一体机VPLC532E在汽车胶带缠绕的开放式CNC应用

机器视觉运动控制一体机在喇叭跟随点胶上的应用

机器视觉运动控制一体机在光伏汇流焊机器人系统的解决方案

机器视觉运动控制一体机在点胶胶路检测上的应用

机器视觉运动控制一体机在SCARA机械手柔性上下料的应用

开放式激光振镜运动控制器在动力电池模组连接片的焊接应用

开放式激光振镜运动控制器的视觉校正振镜精度解决方案

开放式激光振镜运动控制器的激光清洗应用

PCIE超高速实时运动控制卡在六面外观视觉检测上的应用

超高速PCIe EtherCAT运动控制卡在高速异形插件机上的应用

运动控制器多工位位置比较输出在转盘式视觉筛选设备中的应用

EtherCAT总线冗余让制造更安全更可靠更智能

机器视觉运动控制一体机结构体功能上线,助力客户高效开发

正运动携手EPLAN,以高效的电气设计助力运动控制的数字化设计

BissC绝对值编码器在EtherCAT运动控制器中的应用

EtherCAT运动控制器在SCARA和码垛机械手中的应用

EtherCAT运动控制器PT/PVT实现用户自定义轨迹规划

EtherCAT运动控制器在UVW对位平台中的应用

EtherCAT运动控制器Delta机械手应用

EtherCAT运动控制器的MATLAB开发

运动控制器/运动控制卡配套ZCAN总线ZIO模块的使用

运动控制卡/运动控制器的ZCAN总线ZMIO310扩展模块使用

EtherCAT运动控制器在ROS上的应用(下)

EtherCAT运动控制器在ROS上的应用(上)

皮带同步跟随:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十四)

自定义电子凸轮曲线的运动:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十三)

连续轨迹加工和速度前瞻:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十二)

PT/PVT运动模式介绍:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十一)

项目工程下载与XML配置文件下载:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十)

EtherCAT驱动器回零与控制器回零:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(九)

二维/三维的多轴PSO视觉飞拍与精准输出:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(八)

单轴PSO视觉飞拍与精准输出:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(七)

硬件位置比较输出和编码器锁存:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(六)

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(五):通过RTSys进行调试与诊断

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(四):板载IO与总线扩展IO的编码器与脉冲配置的应用

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(三):EtherCAT总线CSP,CSV,CST模式切换

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(二):EtherCAT总线初始化

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(一):驱动安装与建立连接

全国产EtherCAT运动控制边缘控制器(六):RtBasic文件下载与连续轨迹加工的Python+Qt开发

全国产EtherCAT运动控制边缘控制器(五):IO配置与回零运动的Python+Qt开发

全国产EtherCAT运动控制边缘控制器(四):轴参数配置与单轴运动PC上位机C++控制

全国产EtherCAT运动控制边缘控制器(三):外设读写与RTSys开发诊断

全国产EtherCAT运动控制边缘控制器(二):统一的上位机API接口

全国产EtherCAT运动控制边缘控制器(一):ZMC432H硬件接口

高柔SS加减速曲线在锂电池焊接中的应用

EtherCAT和Ethernet的不同点有哪些, 通信周期又是什么意思?

工业以太网时代,该如何选择总线运动控制器?

正运动技术运动控制器如何快速实现单轴/多轴同步跟随功能?


EtherCAT运动控制器在数控加工手轮随动中的应用

EtherCAT运动控制器在数控加工手轮随动中的应用之C++

EtherCAT运动控制器在LabVIEW中的运动控制与实时数据采集

运动控制器PSO视觉飞拍与精准输出的C++开发(三):二维/三维/多轴PSO输出

运动控制器PSO视觉飞拍与精准输出的C++开发(二):多轴PSO等距/周期输出

运动控制器PSO视觉飞拍与精准输出的C++开发(一):单轴PSO

运动控制器八通道PSO的视觉飞拍与精准输出

Windows实时运动控制软核(七):LOCAL高速接口测试之Labview

Windows实时运动控制软核(六):LOCAL高速接口测试之Matlab

Windows实时运动控制软核(五):LOCAL高速接口测试之VC6.0

Windows实时运动控制软核(四):LOCAL高速接口测试之VB.NET

Windows实时运动控制软核(三):LOCAL高速接口测试之C++

Windows实时运动控制软核(二):LOCAL高速接口测试之Qt

Windows实时运动控制软核(一):LOCAL高速接口测试之C#

开放式激光振镜运动控制器:C++ 快速调用图形库应用

开放式激光振镜运动控制器:C++振镜矫正方法与实现

开放式激光振镜运动控制器:C++快速开发


开放式激光振镜运动控制器(五):ZMC408SCAN 光纤激光器的能量控制

开放式激光振镜运动控制器(四):ZMC408SCAN振镜控制光纤激光器加工

开放式激光振镜运动控制器(三):ZMC408SCAN轴控光纤激光器加工

开放式激光振镜运动控制器(二):ZMC408SCAN激光接口与控制

开放式激光振镜运动控制器(一):ZMC408SCAN接口与功能


运动控制器PSO位置同步输出(三):高精度等间距二维三维PSO输出

运动控制器PSO位置同步输出(二):PSO模式详解

运动控制器PSO位置同步输出(一):硬件平台与PSO指令简介


经济型EtherCAT运动控制器(十):EtherCAT总线快速入门

经济型EtherCAT运动控制器(九):示波器使

经济型EtherCAT运动控制器(八):轴参数与运动指令

经济型EtherCAT运动控制器(七):运动缓冲

经济型EtherCAT运动控制器(六):数据储存

经济型EtherCAT运动控制器(五):多任务运行

经济型EtherCAT运动控制器(四):ModbusRTU或ModbusTcp与触摸屏通讯

经济型EtherCAT运动控制器(三):PLC实现多轴直线插补与电子凸轮

经济型EtherCAT运动控制器(二):ZBasic实现多轴直线插补运动

经济型EtherCAT运动控制器(一):功能简介与应用场景


运动控制+机器视觉Demo软件框架(三):视觉纠偏+连续插补的配方编辑

运动控制+机器视觉Demo软件框架(二):移动标定和形状匹配

运动控制+机器视觉Demo软件框架(一):机械参数和配方文件的管理

运动控制+机器视觉Demo软件框架系统概述


开放式激光振镜+运动控制器(六):双振镜运动

开放式激光振镜+运动控制器(五):ZMC408SCAN控制器硬件介绍

开放式激光振镜+运动控制器(四):PSO位置同步输出在激光振镜加工中的应用

开放式激光振镜+运动控制器(三):振镜矫正

开放式激光振镜+运动控制器(二):振镜填充

开放式激光振镜+运动控制器(一):硬件接口


EtherCAT轴扩展模块EIO16084在运动控制系统中的应用
EtherCAT运动控制器中脉冲接口的快速调试与诊断
EtherCAT运动控制器之ZMIO300模块的使用
EtherCAT运动控制器的PLC编程(四) 电子凸轮
EtherCAT运动控制器的PLC编程(三) 电子齿轮
EtherCAT运动控制器的PLC编程(二) 圆弧插补
EtherCAT运动控制器的PLC编程(一) 直线插补


快速入门 | 篇二十一:运动控制器ZHMI组态编程简介一

快速入门 | 篇二十一:正运动技术运动控制器自定义通讯

快速入门 | 篇二十:正运动技术运动控制器MODBUS通讯

快速入门 | 篇十九:正运动技术运动控制器多轴同步与电子凸轮指令简介


快速入门 | 篇十八:正运动技术脉冲型运动控制器的使用

快速入门 | 篇十七:运动控制器多轴插补运动指令的使用

快速入门 | 篇十六:正运动控制器EtherCAT总线快速入门

快速入门 | 篇十五:运动控制器运动缓冲简介

快速入门 | 篇十四:运动控制器基础轴参数与基础运动控制指令

快速入门 | 篇十三:正运动技术运动控制器ZDevelop 编程软件的使用


快速入门 | 篇十二:正运动技术运动控制器U盘接口的使用

快速入门 | 篇十一:正运动技术运动控制器中断的应用

快速入门 | 篇十:运动控制器多任务运行特点

快速入门 | 篇九:如何进行运动控制器示波器的应用?

快速入门 | 篇八:如何进行运动控制器EtherCAT总线的基础使用?

快速入门 | 篇七:如何进行运动控制器ZCAN总线扩展模块的使用?


快速入门 | 篇六:如何进行运动控制器数据与存储的应用?

快速入门 | 篇五:如何进行运动控制器输入/输出IO的应用?

快速入门 | 篇四:如何进行运动控制器与触摸屏通讯?

快速入门 | 篇三:如何进行运动控制器ZPLC程序开发?

快速入门 | 篇二:如何进行运动控制器ZBasic程序开发?

快速入门 | 篇一:如何进行运动控制器固件升级?


EtherCAT与RTEX驱动器轴回零的配置与实现

G代码在运动控制器上的应用

运动控制器的自定义G代码编程应用

离线仿真调试,加快项目进度!

8轴EtherCAT轴扩展模块EIO24088的使用

运动控制器之追剪应用Demo

运动控制器激光振镜控制
运动控制器轴回零的配置与实现

运动控制器位置锁存功能的应用

ZMC运动控制器SCARA机械手应用快速入门

运动控制器RTEX总线使用入门

正运动技术CAD导图软件配合控制器的使用方法

EtherCAT总线运动控制器应用进阶一


EtherCAT运动控制卡开发教程之Qt(下):SCARA机械手正反解的建立

EtherCAT运动控制卡开发教程之Qt(中):小线段连续轨迹加工、暂停与继续

EtherCAT运动控制卡开发教程之Qt(上):开发环境配置与简单运动控制应用


EtherCAT运动控制卡开发教程之python

EtherCAT运动控制卡的SCARA等机器人指令的应用

EtherCAT运动控制卡的PWM与模拟量输出和运动速度同步

EtherCAT运动控制卡硬件比较输出以及编码器锁存

EtherCAT运动控制卡IO动作与运动控制的同步

EtherCAT运动控制卡实时程序的运行和读写控制


EtherCAT运动控制卡的运动暂停、恢复与系统安全设置

EtherCAT运动控制卡小线段前瞻的连续插补运动

EtherCAT运动控制卡的多轴插补运动和手轮运动

EtherCAT运动控制卡的辅助调试工具与方法介绍

EtherCAT运动控制卡的总线轴参数设置和轴运动

EtherCAT运动控制卡的硬件接线与C#的硬件外设读写与回零运动

EtherCAT运动控制卡的硬件接线与C#的单轴运动控制


简单易用的运动控制卡(十六):螺距补偿和反向间隙补偿

简单易用的运动控制卡(十五):PC启停控制器的实时程序

简单易用的运动控制卡(十四):PWM、模拟量输出与运动控制的同步

简单易用的运动控制卡(十三):IO动作与运动控制的同步

简单易用的运动控制卡(十二):运动控制系统的安全设置

简单易用的运动控制卡(十一):运动的暂停恢复和速度倍率设置


简单易用的运动控制卡(十):连续插补和小线段前瞻

简单易用的运动控制卡(九):圆弧插补和螺旋插补

简单易用的运动控制卡(八):直线插补和手轮运动

简单易用的运动控制卡(七):一次性加载多条连续小线段数据

简单易用的运动控制卡(六):Basic文件下载和连续轨迹加工


简单易用的运动控制卡(五):IO配置与回零运动

简单易用的运动控制卡(四):函数库的封装

简单易用的运动控制卡(三):轴参数配置和单轴运动控制

简单易用的运动控制卡(二):外设读写与ZDevelop诊断

简单易用的运动控制卡(一):硬件接线和上位机开发


运动控制卡在ROS上的应用(下)

运动控制卡在ROS上的应用(上)


EtherCAT运动控制卡和LabVIEW构建智能装备(五)

EtherCAT运动控制卡和LabVIEW构建智能装备(四)

EtherCAT运动控制卡和LabVIEW构建智能装备(三)

EtherCAT运动控制卡和LabVIEW构建智能装备(二)

EtherCAT运动控制卡和LabVIEW构建智能装备(一)

EtherCAT运动控制卡在LabVIEW中的运动控制与数据采集


运动控制卡应用开发教程之MATLAB

运动控制卡应用开发教程之C++

运动控制卡应用开发教程之Python

运动控制卡应用开发教程之C#

运动控制卡应用开发教程之Linux

运动控制卡应用开发教程之VB.NET


运动控制卡应用开发教程之VB6.0

运动控制卡应用开发教程之VC6.0

运动控制卡应用开发教程之使用Qt

运动控制卡应用开发教程之LabVIEW

运动控制卡应用开发教程之激光振镜控制

运动控制卡应用开发教程之硬件比较输出


关于正运动技术



深圳市正运动技术有限公司成立于2013年,专注于纯国产运动控制技术研究和通用运动控制软硬件平台和产品的研发,是国家级高新技术和专精特新“小巨人”企业。

正运动技术汇集了来自华为、中兴等公司的优秀人才。力求创新,目前公司拥有专利、著作权等知识产权五十余项。在坚持自主创新的同时,积极联合各大高校和科研院所协同运动控制基础技术的研究,是国内工控领域发展最快的企业之一,也是国内少有、完整掌握运动控制核心技术和实时工控软件平台技术的企业。

正运动技术除本部研发中心外,设有中山、武汉、上海三个研发分部。为更好地服务客户,本部之外设有苏州、东莞两个区域性服务中心,设有佛山、厦门、青岛、西安、武汉、成都、天津、郑州等销售和技术服务机构。

经过众多合作伙伴多年的开发应用,正运动技术的产品广泛地应用于3C电子、半导体、新能源、机器人、包装印刷、纺织服装、激光加工、医疗制药、数控机床、传统加工等领域。

正运动小助手
正运动小助手是正运动技术旗下技术资料平台,可第一时间发布最新产品技术文档,为您奉上最全面的运动控制产品基础知识介绍、使用注意事项及操作步骤指引等资料。
 最新文章