8轴/4轴的EtherCAT轴模块EIO24088G-V2及EIO16084G的使用(一):TwinCAT总线配置与使用

科技   科技   2024-10-24 07:00   广东  

点击上方正运动小助手,随时关注新动态!

上节课给大家介绍了EIO24088-V2及EIO16084结合RTSys进行总线配置与使用,详情请点击→8轴/4轴的EtherCAT轴模块EIO24088-V2及EIO16084的使用(一):RTSys总线配置与使用

今天正运动小助手给大家分享一下EIO24088G-V2及EIO16084G如何用TwinCAT进行总线配置和使用。 


·EIO24088G-V2扩展模块硬件介绍·

EIO24088G-V2总线扩展模块是EtherCAT总线控制器使用的扩展模块,当数字IO、脉冲轴资源不够需要扩展增加的时候,控制器可通过EtherCAT总线连接多个EtherCAT扩展模块进行扩展。控制器可通过映射编号直接访问EIO24088G-V2的IO资源和轴资源。

  • 支持8个脉冲轴进行扩展;

  • 支持扩展24路数字量输入和8路数字量输出,每个脉冲轴另外各有1路数字量输入和1路数字量输出可供配置;

  • 脉冲输出模式为方向/脉冲或双脉冲输出;

  • 每轴最大输出脉冲频率10MHz;

  • 脉冲轴以外的输出口最大输出电流达300mA,可直接驱动部分电磁阀。

应用框图如下所示:


·EIO16084G扩展模块硬件介绍·

EIO16084G总线扩展模块是EtherCAT总线控制器使用的扩展模块,当数字IO、脉冲轴资源不够需要扩展增加的时候,控制器可通过EtherCAT总线连接多个EtherCAT扩展模块进行扩展。控制器可通过映射编号直接访问EIO16084G的IO资源和轴资源。

  • 支持4个脉冲轴扩展;

  • 支持扩展16路数字量输入和8路数字量输出,每个脉冲轴另外各有2路输入和2路输出IO可供配置;

  • 脉冲输出模式为方向/脉冲或双脉冲;

  • 每轴最大输出脉冲频率10MHz;

  • 脉冲轴以外的输出口最大输出电流达300mA,可直接驱动部分电磁阀。

应用框图如下所示:








接口说明

1、EtherCAT总线通讯接口的接线

EIO24088G-V2带两个EtherCAT总线接口,接线时注意EtherCAT IN连接主控制器或上级模块,EtherCAT OUT连接下一级扩展板,IN和OUT口不可混用。

2、通用输入口

EIO24088G-V2带24个通用输入口,输入口需要先使用NODE_IO指令配置IO地址编号才能通过控制器端操作。通用输入口IN的内部电路参考图如下,输入口参数参见下表。

输入口参数说明:

3、通用输出口

EIO24088G-V2带8个通用输出口,输出口需要先使用NODE_IO指令配置IO地址编号后才能通过控制器端操作(NODE_IO指令使用一次便可配置好输入和输出)。通用输出口OUT的内部电路参考图如下,输出口参数参见下表。

输出口参数说明:

4、轴接口

EIO24088G-V2的轴接口有8个,采用DB26针脚,轴接口包含差分脉冲输入信号和差分编码器输入信号,同时有一路通用输入口和一路通用输出口(EIO16084G有两路通用输入口和两路通用输出信号)。

针脚定义说明:

可以通过数据字典中的6013h配置EIO扩展板直接使能与告警,缺省不使用,需要主控制器来操作。





总线接线参考

EIO24088G-V2扩展模块接线规则:EIO24088G-V2可接到EtherCAT总线上的任意节点。

EIO24088G-V2为总线上的一个设备节点,可接入8个脉冲型驱动器,驱动器按照AXIS 0到AXIS 7的顺序依次编号,并且遵从总线上的驱动器编号规则,需要进行轴映射。

驱动器的使能信号为脉冲接口内的通用输出口,直接通过主控制器的OP指令来使能,或使用SDO指令配置数据字典6013h中的BIT8为1后为即可自动使能,主控制器无法直接控制对应的输出口来使能,只需WDOG置1及对应轴的AXIS_ENABLE置1即可。

注意:轴扩展模块的使用个数不是无限制的,参考控制器可扩展的最大轴数。

控制器、EIO扩展模块和驱动器的接线参考如下图ZMC432-V2本体有6个脉冲轴,通过EtherCAT扩展了节点0、1、2、3四个总线轴,节点4八个总线转脉冲轴。扩展轴上的AXIS0-7(对应下图中驱动器编号4-11)分别手动映射为轴号10-17。

涉及的总线相关指令参数概念如下:

1、槽位号(slot) 

槽位号是指控制器上总线接口的编号,缺省为0。当控制器上有多个总线接口时,在线命令发送?*SLOT查看。

运动控制器支持单总线时,槽位号为0。

支持双总线时,EtherCAT总线槽位号为0,RTEX总线槽位号为1。

2、设备号(node)

设备号是指一个槽位上连接的所有设备的编号,从0开始,按设备在总线上的连接顺序自动编号,可以通过NODE_COUNT(slot)指令查看总线上连接的设备总数。

3、驱动器编号

控制器会自动识别出槽位上的驱动器,编号从0开始,按驱动器在总线上的连接顺序自动编号。

驱动器编号与设备号不同,只给槽位上的驱动器设备编号,其他设备忽略。




通过TwinCAT测试扩展的资源

1、安装TwinCAT(安装至C盘),创建一个TwinCAT的项目

2、把EIO24088G-V2的XML文件放入下图所示的TwinCAT的路径下,对应XML文件可找正运动厂商提供

3、安装TwinCAT网卡驱动

4、添加EtherCAT主站

5、选择EIO24088G-V2所使用的TwinCAT驱动的网卡

这里是使用网口转USB连接到电脑上的,所以选择以太网2,如果是直接连接到电脑的网口处选择以太网。

6、扫描ECAT从站
7、建立通讯

8、测试IO,将EIO24088G-V2的OUT2与IN8相连,通过TwinCAT将OUT2置1看IN8是否会随之被置1

9、测试扩展的脉冲轴

(1)找到StartUp配置,设置想使用自动使能的轴6013H数据字典设置成值256,想手动通过轴对应输出口使能可将对应轴6013H数据字典设置成值0,轴1的6013H数据字典为6013H+ 1 * 800H。

(2)重新激活一下配置,这个时候伺服使能断开,EIO24088G-V2本地IO对应使能口置1;找到设置自动使能的轴,设置使能配置后(注意Override的值不能为0),Ready自动勾选,伺服使能,EIO24088G-V2本地IO对应使能口置0,轴0对应的OUT口为OUT8,轴1对应的OUT口为OUT9。

(3)使能后可以看到对应轴状态字值变更,换算为使能状态。

(4)把set参数勾选取消掉会掉使能,掉使能后可以也看到对应轴状态字值变更,换算为掉使能状态。

教学视频:

本次,正运动技术8轴/4轴的EtherCAT轴模块EIO24088G-V2及EIO16084G的使用(一):TwinCAT总线配置与使用就分享到这里。

更多精彩内容请关注“正运动小助手”公众号,需要相关开发环境与例程代码,请咨询正运动技术销售工程师:400-089-8936。

本文由正运动技术原创,欢迎大家转载,共同学习,一起提高中国智能制造水平。文章版权归正运动技术所有,如有转载请注明文章来源。

回顾往期内容   

开奖啦!参与《运动控制系统应用与实践》赠书活动的粉丝们看这里

送书福利!全自主IDE的《运动控制系统应用与实践》

8轴/4轴的EtherCAT轴模块EIO24088-V2及EIO16084的使用(一):RTSys总线配置与使用

BissC绝对值编码器在EtherCAT运动控制器中的应用

SSI绝对值编码器在EtherCAT运动控制器中的应用

开放式激光振镜运动控制器在Ubuntu+Qt下自定义图形标刻

开放式激光振镜运动控制器在Ubuntu+Qt下CAD图形标刻

开放式激光振镜运动控制器在Ubuntu+Qt下的文本标刻

开放式激光振镜运动控制器在Ubuntu+Qt下的激光振镜校正

EtherCAT运动控制器上位机开发之Python+Qt(三):PDO配置与SDO读写

EtherCAT运动控制器上位机开发之Python+Qt(二):回零

EtherCAT运动控制器上位机开发之Python+Qt(一):链接与单轴运动


C#之Delta并联机械手的视觉相机标定与形状匹配

C#之Delta并联机械手正逆解的建立和手动运动

C#之Delta并联机械手的视觉同步分拣

PCIe EtherCAT实时运动控制卡PCIE464的安装与调试

PCIe EtherCAT实时运动控制卡PCIE464的IO与编码器读写应用

PCIe EtherCAT实时运动控制卡的DXF图形的CAD导图与多条运动指令的快速加工

简单易用的以太网数据采集卡应用开发之C#

简单易用的以太网IO控制卡:C#读写测试

VPLC7机器视觉运动控制一体机在三轴SCARA机械手螺丝锁付的应用

VPLC系列机器视觉运动控制一体机在五轴联动点胶上的应用

基于VPLC7机器视觉运动控制一体机的UVW视觉对位解决方案

基于VPLC711的曲面外观检测XYR运动控制解决方案

基于VPLC532E开放式数控系统在五轴义齿机上的应用

机器视觉运动控制一体机在SCARA机械手柔性上下料的应用

机器视觉运动控制一体机在DELTA并联机械手视觉上下料应用

机器视觉运动控制快组态软件RTFuse在XYZ三轴运动平台的应用方案

机器视觉运动控制一体机VPLC532E在汽车胶带缠绕的开放式CNC应用

机器视觉运动控制一体机在喇叭跟随点胶上的应用

机器视觉运动控制一体机在光伏汇流焊机器人系统的解决方案

机器视觉运动控制一体机在点胶胶路检测上的应用


开放式激光振镜运动控制器在动力电池模组连接片的焊接应用

开放式激光振镜运动控制器的视觉校正振镜精度解决方案

开放式激光振镜运动控制器的激光清洗应用

PCIe实时运动控制卡的双盘视觉筛选机上位机开发应用

PCIE超高速实时运动控制卡在六面外观视觉检测上的应用

超高速PCIe EtherCAT运动控制卡在高速异形插件机上的应用

运动控制器多工位位置比较输出在转盘式视觉筛选设备中的应用

EtherCAT总线冗余让制造更安全更可靠更智能

机器视觉运动控制一体机结构体功能上线,助力客户高效开发

正运动携手EPLAN,以高效的电气设计助力运动控制的数字化设计

EtherCAT运动控制器在SCARA和码垛机械手中的应用

EtherCAT运动控制器PT/PVT实现用户自定义轨迹规划

EtherCAT运动控制器在UVW对位平台中的应用

EtherCAT运动控制器Delta机械手应用

EtherCAT运动控制器的MATLAB开发

运动控制器/运动控制卡配套ZCAN总线ZIO模块的使用

运动控制卡/运动控制器的ZCAN总线ZMIO310扩展模块使用

EtherCAT运动控制器在ROS上的应用(下)

EtherCAT运动控制器在ROS上的应用(上)

皮带同步跟随:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十四)

自定义电子凸轮曲线的运动:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十三)

连续轨迹加工和速度前瞻:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十二)

PT/PVT运动模式介绍:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十一)

项目工程下载与XML配置文件下载:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(十)

EtherCAT驱动器回零与控制器回零:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(九)

二维/三维的多轴PSO视觉飞拍与精准输出:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(八)

单轴PSO视觉飞拍与精准输出:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(七)

硬件位置比较输出和编码器锁存:EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(六)

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(五):通过RTSys进行调试与诊断

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(四):板载IO与总线扩展IO的编码器与脉冲配置的应用

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(三):EtherCAT总线CSP,CSV,CST模式切换

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(二):EtherCAT总线初始化

EtherCAT超高速实时运动控制卡XPCIE1032H上位机C#开发(一):驱动安装与建立连接

全国产EtherCAT运动控制边缘控制器(六):RtBasic文件下载与连续轨迹加工的Python+Qt开发

全国产EtherCAT运动控制边缘控制器(五):IO配置与回零运动的Python+Qt开发

全国产EtherCAT运动控制边缘控制器(四):轴参数配置与单轴运动PC上位机C++控制

全国产EtherCAT运动控制边缘控制器(三):外设读写与RTSys开发诊断

全国产EtherCAT运动控制边缘控制器(二):统一的上位机API接口

全国产EtherCAT运动控制边缘控制器(一):ZMC432H硬件接口

高柔SS加减速曲线在锂电池焊接中的应用

EtherCAT和Ethernet的不同点有哪些, 通信周期又是什么意思?

工业以太网时代,该如何选择总线运动控制器?

正运动技术运动控制器如何快速实现单轴/多轴同步跟随功能?


EtherCAT运动控制器的MATLAB开发

EtherCAT总线运动控制器中简单易用的直线插补

EtherCAT运动控制器在数控加工手轮随动中的应用

EtherCAT运动控制器在数控加工手轮随动中的应用之C++

EtherCAT运动控制器在LabVIEW中的运动控制与实时数据采集

运动控制器PSO视觉飞拍与精准输出的C++开发(三):二维/三维/多轴PSO输出

运动控制器PSO视觉飞拍与精准输出的C++开发(二):多轴PSO等距/周期输出

运动控制器PSO视觉飞拍与精准输出的C++开发(一):单轴PSO

运动控制器八通道PSO的视觉飞拍与精准输出

Windows实时运动控制软核(七):LOCAL高速接口测试之Labview

Windows实时运动控制软核(六):LOCAL高速接口测试之Matlab

Windows实时运动控制软核(五):LOCAL高速接口测试之VC6.0

Windows实时运动控制软核(四):LOCAL高速接口测试之VB.NET

Windows实时运动控制软核(三):LOCAL高速接口测试之C++

Windows实时运动控制软核(二):LOCAL高速接口测试之Qt

Windows实时运动控制软核(一):LOCAL高速接口测试之C#

开放式激光振镜运动控制器:C++ 快速调用图形库应用

开放式激光振镜运动控制器:C++振镜矫正方法与实现

开放式激光振镜运动控制器:C++快速开发


开放式激光振镜运动控制器(五):ZMC408SCAN 光纤激光器的能量控制

开放式激光振镜运动控制器(四):ZMC408SCAN振镜控制光纤激光器加工

开放式激光振镜运动控制器(三):ZMC408SCAN轴控光纤激光器加工

开放式激光振镜运动控制器(二):ZMC408SCAN激光接口与控制

开放式激光振镜运动控制器(一):ZMC408SCAN接口与功能


运动控制器PSO位置同步输出(三):高精度等间距二维三维PSO输出

运动控制器PSO位置同步输出(二):PSO模式详解

运动控制器PSO位置同步输出(一):硬件平台与PSO指令简介


经济型EtherCAT运动控制器(十):EtherCAT总线快速入门

经济型EtherCAT运动控制器(九):示波器使

经济型EtherCAT运动控制器(八):轴参数与运动指令

经济型EtherCAT运动控制器(七):运动缓冲

经济型EtherCAT运动控制器(六):数据储存

经济型EtherCAT运动控制器(五):多任务运行

经济型EtherCAT运动控制器(四):ModbusRTU或ModbusTcp与触摸屏通讯

经济型EtherCAT运动控制器(三):PLC实现多轴直线插补与电子凸轮

经济型EtherCAT运动控制器(二):ZBasic实现多轴直线插补运动

经济型EtherCAT运动控制器(一):功能简介与应用场景


运动控制+机器视觉Demo软件框架(三):视觉纠偏+连续插补的配方编辑

运动控制+机器视觉Demo软件框架(二):移动标定和形状匹配

运动控制+机器视觉Demo软件框架(一):机械参数和配方文件的管理

运动控制+机器视觉Demo软件框架系统概述


开放式激光振镜+运动控制器(六):双振镜运动

开放式激光振镜+运动控制器(五):ZMC408SCAN控制器硬件介绍

开放式激光振镜+运动控制器(四):PSO位置同步输出在激光振镜加工中的应用

开放式激光振镜+运动控制器(三):振镜矫正

开放式激光振镜+运动控制器(二):振镜填充

开放式激光振镜+运动控制器(一):硬件接口


EtherCAT轴扩展模块EIO16084在运动控制系统中的应用
EtherCAT运动控制器中脉冲接口的快速调试与诊断
EtherCAT运动控制器之ZMIO300模块的使用
EtherCAT运动控制器的PLC编程(四) 电子凸轮
EtherCAT运动控制器的PLC编程(三) 电子齿轮
EtherCAT运动控制器的PLC编程(二) 圆弧插补
EtherCAT运动控制器的PLC编程(一) 直线插补


快速入门 | 篇二十一:运动控制器ZHMI组态编程简介一

快速入门 | 篇二十一:正运动技术运动控制器自定义通讯

快速入门 | 篇二十:正运动技术运动控制器MODBUS通讯

快速入门 | 篇十九:正运动技术运动控制器多轴同步与电子凸轮指令简介


快速入门 | 篇十八:正运动技术脉冲型运动控制器的使用

快速入门 | 篇十七:运动控制器多轴插补运动指令的使用

快速入门 | 篇十六:正运动控制器EtherCAT总线快速入门

快速入门 | 篇十五:运动控制器运动缓冲简介

快速入门 | 篇十四:运动控制器基础轴参数与基础运动控制指令

快速入门 | 篇十三:正运动技术运动控制器ZDevelop 编程软件的使用


快速入门 | 篇十二:正运动技术运动控制器U盘接口的使用

快速入门 | 篇十一:正运动技术运动控制器中断的应用

快速入门 | 篇十:运动控制器多任务运行特点

快速入门 | 篇九:如何进行运动控制器示波器的应用?

快速入门 | 篇八:如何进行运动控制器EtherCAT总线的基础使用?

快速入门 | 篇七:如何进行运动控制器ZCAN总线扩展模块的使用?


快速入门 | 篇六:如何进行运动控制器数据与存储的应用?

快速入门 | 篇五:如何进行运动控制器输入/输出IO的应用?

快速入门 | 篇四:如何进行运动控制器与触摸屏通讯?

快速入门 | 篇三:如何进行运动控制器ZPLC程序开发?

快速入门 | 篇二:如何进行运动控制器ZBasic程序开发?

快速入门 | 篇一:如何进行运动控制器固件升级?


EtherCAT与RTEX驱动器轴回零的配置与实现

G代码在运动控制器上的应用

运动控制器的自定义G代码编程应用

离线仿真调试,加快项目进度!

8轴EtherCAT轴扩展模块EIO24088的使用

运动控制器之追剪应用Demo

运动控制器激光振镜控制
运动控制器轴回零的配置与实现

运动控制器位置锁存功能的应用

ZMC运动控制器SCARA机械手应用快速入门

运动控制器RTEX总线使用入门

正运动技术CAD导图软件配合控制器的使用方法

EtherCAT总线运动控制器应用进阶一


EtherCAT运动控制卡开发教程之Qt(下):SCARA机械手正反解的建立

EtherCAT运动控制卡开发教程之Qt(中):小线段连续轨迹加工、暂停与继续

EtherCAT运动控制卡开发教程之Qt(上):开发环境配置与简单运动控制应用


EtherCAT运动控制卡开发教程之python

EtherCAT运动控制卡的自定义运动曲线

EtherCAT运动控制卡的SCARA等机器人指令的应用
EtherCAT运动控制卡的PWM与模拟量输出和运动速度同步
EtherCAT运动控制卡硬件比较输出以及编码器锁存
EtherCAT运动控制卡IO动作与运动控制的同步
EtherCAT运动控制卡实时程序的运行和读写控制


EtherCAT运动控制卡的运动暂停、恢复与系统安全设置

EtherCAT运动控制卡小线段前瞻的连续插补运动

EtherCAT运动控制卡的多轴插补运动和手轮运动

EtherCAT运动控制卡的辅助调试工具与方法介绍

EtherCAT运动控制卡的总线轴参数设置和轴运动

EtherCAT运动控制卡的硬件接线与C#的硬件外设读写与回零运动

EtherCAT运动控制卡的硬件接线与C#的单轴运动控制


简单易用的运动控制卡(十六):螺距补偿和反向间隙补偿

简单易用的运动控制卡(十五):PC启停控制器的实时程序

简单易用的运动控制卡(十四):PWM、模拟量输出与运动控制的同步

简单易用的运动控制卡(十三):IO动作与运动控制的同步

简单易用的运动控制卡(十二):运动控制系统的安全设置

简单易用的运动控制卡(十一):运动的暂停恢复和速度倍率设置


简单易用的运动控制卡(十):连续插补和小线段前瞻

简单易用的运动控制卡(九):圆弧插补和螺旋插补

简单易用的运动控制卡(八):直线插补和手轮运动

简单易用的运动控制卡(七):一次性加载多条连续小线段数据

简单易用的运动控制卡(六):Basic文件下载和连续轨迹加工


简单易用的运动控制卡(五):IO配置与回零运动

简单易用的运动控制卡(四):函数库的封装

简单易用的运动控制卡(三):轴参数配置和单轴运动控制

简单易用的运动控制卡(二):外设读写与ZDevelop诊断

简单易用的运动控制卡(一):硬件接线和上位机开发


运动控制卡在ROS上的应用(下)

运动控制卡在ROS上的应用(上)


EtherCAT运动控制卡和LabVIEW构建智能装备(五)

EtherCAT运动控制卡和LabVIEW构建智能装备(四)

EtherCAT运动控制卡和LabVIEW构建智能装备(三)

EtherCAT运动控制卡和LabVIEW构建智能装备(二)

EtherCAT运动控制卡和LabVIEW构建智能装备(一)

EtherCAT运动控制卡在LabVIEW中的运动控制与数据采集


运动控制卡应用开发教程之MATLAB

运动控制卡应用开发教程之C++

运动控制卡应用开发教程之Python

运动控制卡应用开发教程之C#

运动控制卡应用开发教程之Linux

运动控制卡应用开发教程之VB.NET


运动控制卡应用开发教程之VB6.0

运动控制卡应用开发教程之VC6.0

运动控制卡应用开发教程之使用Qt

运动控制卡应用开发教程之LabVIEW

运动控制卡应用开发教程之激光振镜控制

运动控制卡应用开发教程之硬件比较输出

关于正运动技术   



深圳市正运动技术有限公司成立于2013年,专注于纯国产运动控制技术研究和通用运动控制软硬件平台和产品的研发,是国家级高新技术和专精特新“小巨人”企业。

正运动技术汇集了来自华为、中兴等公司的优秀人才。力求创新,目前公司拥有专利、著作权等知识产权五十余项。在坚持自主创新的同时,积极联合各大高校和科研院所协同运动控制基础技术的研究,是国内工控领域发展最快的企业之一,也是国内少有、完整掌握运动控制核心技术和实时工控软件平台技术的企业。

正运动技术除本部研发中心外,设有中山、武汉、上海三个研发分部。为更好地服务客户,本部之外设有苏州、东莞两个区域性服务中心,设有佛山、厦门、青岛、西安、武汉、成都、天津、郑州等销售和技术服务机构。

经过众多合作伙伴多年的开发应用,正运动技术的产品广泛地应用于3C电子、半导体、新能源、机器人、包装印刷、纺织服装、激光加工、医疗制药、数控机床、传统加工等领域。

正运动小助手
正运动小助手是正运动技术旗下技术资料平台,可第一时间发布最新产品技术文档,为您奉上最全面的运动控制产品基础知识介绍、使用注意事项及操作步骤指引等资料。
 最新文章